b

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

DTIC

ELECTE %
JAN2 3 1995 of 1§

THESIS

it
O ‘
L€ &
O
REAL-TIME COMPRESSED VIDEO >
TRANSMISSION ACROSS THE COMMON —_—
DATA LINK —_—
by
|
Thaddeus Owens Walker III C 31

June, 1995

Thesis Co-Advisors:

Murali Tummala
Shridhar B. Shukla

Approved for public release; distribution is unlimited.

DTIC QUALITY TNSPECTED 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlmgton VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1995 Engineer's Thesis
4. TITLE AND SUBTITLE REAL-TIME COMPRESSED VIDEO 5. FUNDING NUMBERS

TRANSMISSION ACROSS THE COMMON DATA LINK
6. AUTHOR(S) Walker, T. Owens III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
(1) Space and Naval Warfare Systems Command AGENCY REPORT NUMBER

2457 Crystal Park #5, Arlington, VA 22202-5100
(2) Defense Airborne Reconnaissance Office
Washington, D.C. 20330-1000

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The advances in high speed computer networks and digital communication techniques have enabled the rapid and
extensive dissemination of information throughout the modern defense infrastructure. One of the challenges in networking
today is real-time dissemination of information. This thesis proposes a solution for a specific aspect of this challenge,
namely, the transmission of real-time compressed video data across the Common Data Link (CDL), a high-speed military
data link designed to operate in high error environments. Current research is primarily focused on the transmission of real-
time data across low-error links.

This thesis proposes, simulates, and analyzes a mechanism which guarantees that (1) delay bounds are met for real-time
flows despite network overload and (2) a minimum acceptable image quality is maintained despite the presence of highly
correlated errors. These highly correlated errors are characteristic of the type of electromagnetic jamming likely to be
encountered by the CDL. This mechanism consists of four fundamental requirements: (1) a hierarchical image compression
scheme, (2) rate control at the source, (3) bandwidth allocation within all encountered network nodes, and (4) dynamic
forward error correction. The proposed solution is modeled in the OPNET simulation environment, and the validity and
feasability of the mechanism are verified. In addition, the simulation is interfaced with a compression/decompression
algorithm running in MATLAB to enable the subjective analysis of actual images before and after transmission in various
jamming scenarios. The results demonstrate the effectiveness of the proposed solution in meeting delay guarantees and
maintaining image quality.

14. SUBJECT TERMS 15. NUMBER OF
Common Data Link (CDL), Real-Time, Image Compression, Video Transmission PAGES 117
16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

i

g Aceession For "
NTIS @Bagl)
DTIC T4B 0
Approved for public release; distribution is unlimited. | Uosnrnouncea O 5

Justificat iy

REAL-TIME COMPRESSED VIDEO TRANSMISSION | By

ACROSS THE COMMON DATA LINK Distribution/ |
Availability Codes |

[Avail avd/or

T. Owens Walker III Dist | Special
Lieutenant, United States Navy 9.\ l
B.S., Cornell University, 1987 1 ‘

|
|

I
l

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
June 19 /}

/ S
Author: \ . g A%

T. Owens Walker III

Approved by: M/vvvv'Q‘v m‘v«g“’\

Murali Tummala, Thesis Co-Advisor

AV S AKX =

Shridhar B. Shukla, Thesis Co-Advisor

SV lehoil 8 /1Y Jprs i

Michael A. Morgan, C}girman
Department of Electrical and Computer Engineering

iii

v

ABSTRACT

The advances in high speed computer networks and digital communication
techniques have enabled the rapid and extensive dissemination of information throughout
the modern defense infrastructure. One of the challenges in networking today is real-time
dissemination of information. This thesis proposes a solution for a specific aspect of this
challenge, namely, the transmission of real-time compressed video data across the
Common Data Link (CDL), a high-speed military data link designed to operate in high
error environments. Current research is primarily focused on the transmission of real-time
data across low-error links.

This thesis proposes, simulates, and analyzes a mechanism which guarantees that
(1) delay bounds are met for real-time flows despite network overload and (2) a minimum
acceptable image quality is maintained despite the presence of highly correlated errors.
These highly correlated errors are characteristic of the type of electromagnetic jamming
likely to be encountered by the CDL. This mechanism consists of four fundamental
requirements: (1) a hierarchical image compression scheme, (2) rate control at the source,
(3) bandwidth allocation within all encountered network nodes, and (4) dynamic forward
error correction. The proposed solution is modeled in the OPNET simulation
environment, and the validity and feasability of the mechanism are verified. In addition,
the simulation is interfaced with a compression/decompression algorithm running in
MATLAB to enable the subjective analysis of actual images before and after transmission
in various jamming scenarios. The results demonstrate the effectiveness of the proposed

solution in meeting delay guarantees and maintaining image quality.

vi

TABLE OF CONTENTS

L INTRODUCTION e, 1
A. COMMON DATA LINK OVERVIEW 1

B. OBJECTIVES i, 1

C. CONTRIBUTION i, 2

D. ORGANIZATION i 2

II. REAL-TIME TRANSMISSION OFIMAGERY 3
A. COMMUNICATION REQUIREMENTS 3

B. REAL-TIME COMMUNICATION 4

1. Quality of Service Metrics 4

a. Delay 4

b. Reliability, 4

c. Fidelity 5

2. Real-Time Applications 5

3. Techniques for Real-Time Application Support 6

C. PROPOSED SOLUTIONttt 8

1. Rate Control and Bandwidth Reservation 9

2. Forward Error Correction 9

3. Implementation Issues 10

II. REQUIRED APPLICATION AND NETWORK SUPPORT 11
A. IMAGE COMPRESSION e 11

B. LINK MONITORINGc.ii ... 14

C. ERROR CORRECTION CODINGcovviinaineannn. .. 15

IV. CDLMODEL OVERVIEW 17
A. DATAFLOW . ..o i 17

B. CONTROL INFORMATION FLOW 19

C. EXPLANATION OF PROCEDURES 21

1. Request to Establish a Real-Time Flow 21

2. Normal Transmissionc.oo....... 23

3. Detection of Jamming 24

4. Suspension of Jamming e 25

V. CDL MODEL DETAILS e 27
A. REAL-TIME FDDI STATION i, 27

1. Token/Leaky Bucket 29

vii

a. Token Bucket, 30

b. Leaky Bucket 33

2. Compressed Video Receiver 35

B. CDLNETWORK INTERFACEt 36
I MAC e 37

2. CDL Managerc.iiieiein i 39

a. Packet Amrivals 40

b. Transmitter Update 41

c. Completion of Packet Transmission 42

3. FECMechanism 43

4. Link Monitoring Mechanism 44

5. CDL Physical Pipeline 45

a. cdlpterror 46

b. edlptecc 48

C. MATLAB INTERFACEt 48
I. create_mask 50

2. idwt2DEC.m modification 51

VI RESULTS .. e 53
A. SIMULATION OVERVIEW, 53
B. TRANSMISSION WITHOUT JAMMING 55
I Queue Sizes oo it i e e e 55

2. Image Data Transmission 57

3. Received Image Quality 59

C. TRANSMISSION WITHJAMMING, 61
I Jamming 61

2. QUEUE SIZES . - . v ot i e 62

3. Image Data Transmission 63

4. Received Image Quality 65

VII. CONCLUDING REMARKS 69
A. CONCLUSIONS e e et 69
B. FOLLOW-ON WORK i, 70
APPENDIX A. CDL MODEL USERSGUIDE 71
A. SYSTEM REQUIREMENTS 71
B. CDL MODEL OPERATION i, 72
1. Applications 72

2. CDL Managerttt 74

3. Jamming e 75

4. Simulation Execution 75

C. CDL MODEL INTERFACES 76

2. Environmental file: cdlef 80

D. CDL MODEL OUTPUT i, 88

1. Statistical Output 89

2. Image Generation 91

3. Debugging 93

E. CDL MODEL MODIFICATION 94

1. Additional Real-time FDDI Stations 94

2. CDL Channel Reorganization 94

3. Admission Control 95

4. End-to-End User Feedback 95

5. Alternate High Level Protocol 96

APPENDIX B. PROGRAM LISTINGS e 97
A. OPNET Model i, 97

B. MATLAB . .. 97

1. create_maskam 97

2. eval_maskm 98

3. Idwt2DECam 99
LISTOFREFERENCES I 103
INITIAL DISTRIBUTION LIST i 105

L 1. Listing of Simulation Attributes 76

ix

I. INTRODUCTION

A. COMMON DATA LINK OVERVIEW

The Common Data Link (CDL) is being developed as part of a multipurpose
network infrastructure by the Defense Airborne Reconnaissance Office (DARO). It is
designed as a full duplex, jam-resistant point-to-point microwave communication system.
The CDL is intended to provide a real-time, as well as reliable, data transfer facility
between an airborne data collection platform and a surface intelligence platform. The link
comprises a downlink, called the return link, and an uplink, called the command link.

The command link is designed to transmit asset, link and sensor command and
control information to the airborne platform and operates at 200 kbps. This link employs
binary phase shift keying spread spectrum modulation.

The return link is designed to transmit sensor data, link status and airborne asset
reports to the surfage platform. The return link employs offset quadrature phase shift
keying and can operate at 10.71 Mbps, 137.088 Mbps, or 274.176 Mbps. It can be
configured into a hierarchy of time division multiplexed channels depending on the

aggregate bit rate selected [Ref. 1].
B. OBJECTIVES

The main objective of this thesis is to develop and analyze a communication
mechanism to provide real-time compressed video transmission across the CDL. This
mechanism must function correctly in the presence of the high error rates associated with
jamming. In the process, a comprehensive CDL network model, under development at
the Naval Postgraduate School and designed within MIL 3, Inc.'s Optimized Network
Engineering Tool (OPNET), has been completed.

C. CONTRIBUTION

This thesis makes the following contributions to the ongoing CDL research effort.
It

(1) proposes and analyzes a solution to the problem of real-time constraints on
a packet-switched network in the presence of highly correlated errors,

(2) produces a CDL model in OPNET,

(3) provides a mechanism to subjectively evaluate the transmission of still
imagery across the CDL, and

4) provides a user's guide for the CDL model.

D. ORGANIZATION

This thesis is organized in the following manner. The problem addressed and the
proposed solution are presented in Chapter II, along with a discussion of the real-time
communication theory behind the development of the proposed solution. Chapter IIT
presents the application and network support required by the proposed solution. This
chapter describes the video compression algorithm utilized, an exploration of link
monitoring techniques, and a justification of the error correction model employed. The
overview of the network model is provided in Chapter IV. Chapter V discusses the
mode] and its associated routines in detail. Sample results showing the capabilities of the
model are presented in Chapter VI. Chapter VII presents our conclusions and proposes
possible follow-on areas of research. Appendix A contains a condensed user's guide to
the CDL model, detailing the step-by-step procedures for using the model. Appendix B
is a listing of all the programs for both the OPNET simulation models and the MATLAB

Image generation routines.

II. REAL-TIME TRANSMISSION OF IMAGERY

This chapter presents the theoretical basis upon which the work reported here has
been developed. Specifically, the first section poses the ‘problem to be addressed while
the third section presents the proposed solution to this problem. The intervening section
discusses the current state of research in the field of real-time transmission and outlines

the specific issues that must be addressed by any real-time communication scheme.
A. COMMUNICATION REQUIREMENTS

This thesis investigates how real-time video image data can be transferred across
the CDL. The video images to be transmitted are encoded using a five level hierarchical
coding scheme based on a discrete wavelet decomposition algorithm. The presence of a
fixed playback point at the receiving application defines the need for a maximum real-
time delay bound, which will be discussed in the next section. The playback point is
used by the receiving application to determine how much data needs to be buffered prior
to forwarding it to the user. This thesis proposes, implements, and analyzes a mechanism
which guarantees that

€)) delay bounds are met for real-time flows despite network overload and

2) a minimum acceptable image quality is maintained despite the presence of

highly correlated errors. _
These highly correlated errors are characteristic of the type of electromagnetic jamming

that is expected to be encountered by the CDL.

B. REAL-TIME COMMUNICATION
1. Quality of Service Metrics
a. Delay

Delay is one of the primary metrics for measuring the quality of service
in a packet-switched network [Ref. 2]. It can be measured as the per-packet delay or the
inter-packet delay. The former is known as the end-to-end delay while the latter is
referred to as the jitter. A maximum and minimum bound on the end-to-end packet delay
determines 2 maximum and minimum bound on the jitter [Ref. 3]. Therefore, this thesis
primarily deals with the end-to-end delay. The delay bounds provided by a network can
be either deterministic or statistical [Ref. 4]. A deterministic bound is one that is never
exceeded while a statistical bound provides a probability that the given bound will not be
exceeded. A deterministic bound can be thought of as a statistical bound where the
probability that the specified bound will not be exceeded is one. The mechanism
presented in this thesis enforces a deterministic end-to-end delay bound, which represents

a firm upper (and lower) bound on the maximum delay any packet will encounter.
b. Reliability

Reliability is a measure of the probability that a packet is received error
free. In a real-time environment, there is a trade-off between delay constraints and
reliability. As a result, current work in the field of real-time transmission typically
assumes an underlying error-free network or, alternately, assumes that the data is not error
sensitive. Error sensitive data transfers subjected to highly correlated errors in the
presence of tight real-time constraints have not been studied extensively [Ref. 5]. This

is exactly the scenario encountered by the CDL when operating under the influence of

hostile jamming. The thesis addresses the highly correlated errors imposed by jamming
and incorporates a forward error correction scheme to ensure that a minimum image

quality is maintained.
c. Fidelity

Fidelity is a measure of how faithfully the original image is reproduced at
the destination. It is the result of the above mentioned metrics and serves as a
comprehensive evaluation of the performance of the communication mechanism over a
given network. Typically, fidelity is measured statistically by recording the number of
packets lost per image or by observing the signal-to-noise ratio of the reconstructed image
[Ref. 6]. While these metrics are useful, a more effective measure of the quality of a
transmitted image is a subjective evaluation of the reconstructed image itself. This is
particularly true when the end-user is a human, as in some of the CDL deployment
scenarios. Although both the packet loss rate and the signal-to-noise ratio will be
examined as in most existing studies, this thesis makes the additional contribution of

providing the reconstructed images for subjective evaluation by the user.
2. Real-Time Applicafions

We first define, for a packet-switched network, what is meant by real-time traffic.
In their paper, Shenker, Clark and Zhang [Ref. 2] divide applications into two general
service types: elastic and real-time. Elastic applications always wait for late data to
arrive. As a result, no prior characterization of an elastic application’s traffic is required
for it to function properly. Examples of elastic applications are Telnet, E-mail, and FTP.
A real-time application, on the other hand, is sensitive to delay. Late packets are

discarded.

Real-time applications are further divided into two subtypes: tolerant and
intolerant. A tolerant application can vary its playback point to allow for changes in the
actual delays experienced by the packets. Not surprisingly, these applications are referred
to as adaptive playback applications and require a predictive service, which provides a
statistical delay bound rather a deterministic one. An intolerant application requires a
fixed maximum delay because it makes use of a fixed playback point. Thus, this type
of application requires a guaranteed maximum delay bound. While the tolerant type is
more flexible, the intolerant type requires more stringent guarantees from the network.
This thesis assumes intolerant applications with a fixed playback point. Additionally, it
assumes that the receiver has ample buffer space availability to accommodate the required

playback point.
3. Techniques for Real-Time Application Support

Presently, there are two main approaches to support real-time traffic. Both are
based on the fundamental idea of reserving resources and performing admission control
to ensure the quality of service. The two approaches differ in that one requires the
periodic "update” of the real-time flow [Ref. 7] while.the other fixes the flow parameters
at the real-time flow establishment [Ref. 8]. Several variations of the second approach
that offer some sort of feedback to control the output of the sender have also been
proposed [Ref. 6].

The idea of providing delay guarantees across a packet-switéhed network carrying
real-time as well as non-real-time traffic is based on the work of Parekh and Gallager
[Ref. 3]. They have demonstrated that a form of weighted fair queuing [Ref. 9] at every

network node, coupled with rate control at the source, is both necessary and sufficient to

provide a maximum delay bound on the transmission of packets in a packet-switched

network. It is shown that this maximum bound is:

T = — s Loy == (1)
g, 8. m=1 I

where B; is the application's token bucket size, g; is the weighted rate assigned to the

application, h; is the number of hops in the connection, 1, is the application's maximum

packet size, 1, is the maximum packet size of the network, and I, is the bandwidth
outbound on hop m. The token bucket size is the maximum number of tokens (described
in bits) that can be held by the token/leaky bucket at any given time. The weighted rate
is the transmission rate assigned by the network to the leaky/token bucket. The
bandwidth is a measure (in bps) of the transmission rate assigned to the flow at each node
along the route. It is important to emphasize that this delay bound is valid whether or
not the source traffic is regulated (or shaped) for the other active applications attached to
the network.

Five elements are required to enforce the Parekh and Gallager delay bound and
are present in all the existing real-time communication schemes:

(1) A flow specification: The application must inform the network of the quality of
service it requires. This is in the form of a description of the traffic it intends to
generate. [Ref. 7] - '

(2) Admission control: Based on the flow specification, the network must decide
whether or not it can provide the quality of service required by the application.
If not, the network must deny the application access to the network. [Ref. 10]

(3) A real-time flow establishment: To apply the resource reservation required to
protect the real-time data from general data, the network must, in effect, setup a

channel for the real-time traffic to follow. [Ref. 8]

(4) Resource reservation: This real-time channel is set up by reserving various
resources along the chosen route. These resources include bandwidth and buffer
capacity.

(5) Packet scheduling: To make use of the resources reserved, a packet scheduling
mechanism must be in place at the network node to differentiate between the
various real-time and elastic data flows.

In the solution presented in this thesis, the admission control is done manually for

simulation purposes. In other words, an application is not allowed to request to establish

a real-time flow unless the resources exist to accommodate it. It is assumed that follow-

on work will include the implementation of an effective automatic admission control

strategy.

C. PROPOSED SOLUTION

The mechanism proposed in this thesis ensures that the Parekh and Gallager
maximum delay bound calculated as above will be maintained in the presence of network
overload. This solution differs from the existing proposals in that it introduces the notion
of dynamic, network-controlled resource reservation and allocation. Although many of
the existing mechanisms seek to dynamically adapt the sending application's output, none
allows the network to dynamically alter its own resource allocations. An overview of the
proposed solution follows.

To fulfill the requirement to maintain the guaranteed quality of service despite
errors highly correlated in time, the solution presented in this thesis utilizes a link quality
monitoring mechanism to determine the status of the link. As link conditions deteriorate,
the network applies forward error correction to the real-time traffic. This adds bandwidth
to each of the flows and forces the network to reallocate its resources and inform the
sending applications of their new flow requirements. These new flow requirements imply

that the original flow specification must include both desired and minimum quality of

service requirements to ensure the application can meet the new flow specifications. The

remainder of this section will outline the specific details of this solution.
1. Rate Control and Bandwidth Reservation

Rate control at the source is provided by a token-leaky bucket that is used to
regulate the flow of image data from the various compression levels. Weighted fair
queuing is achieved by implementing intelligent bandwidth allocation and reservation at
the Common Data Link-Network Interface (CDL-NI). This involves dedicated buffers
assigned to the real-time application data, as well as a general queue for non-real-time
applications. The rate out of these queues to the transmitter is controlled to guarantee a
certain bandwidth to the real-time application. These rates are assigned individually and
will typically vary between the different queues. The only constraint is that the sum of
the transmission rates of the real-time queues and the non-real-time queue must not
exceed the aggregate bandwidth of the attached CDL. It is assumed that the airborne and
surface LANs, modeled as FDDI rings, provide the bandwidth necessary over the LANs
by proper selection of the synchronous allotments assigned to the sending node and the

receiving network interface.
2. Forward Error Correction

Forward error correction (FEC) is applied to the transmitted data when Jjamming
is reported by the link monitoring mechanism. The application transmission rate is
reduced to the minimum acceptable data rate that is agreed upon in the flow specification
when the application requested to establish a real-time flow. In this thesis, this
corresponds to sending only resolution level one image data. To enforce this dynamic
response, a CDL manager at the network interface is required. This CDL manager informs

the leaky bucket-token bucket mechanism of the need to send only the minimum

acceptable data flow and updates the CDL bandwidth allocation at the queue outputs to
reflect the addition of the forward error correction overhead. With the detection of the
end of jamming, the application is allowed to return to its desired transmission rate with
the necessary coordination once again being performed by the CDL manager. To ensure
timely response to the presence of jamming, the above control interactions consist entirely
of communications within the confines of the LAN containing the sending application.
It is crucial to realize, that, in all scenarios, the maximum delay bound guaranteed by the

network to a particular flow does not change.

3. Implementation Issues

The mechanism proposed above requires the implementation of the following
components in OPNET: (1) a token-leaky bucket mechanism at the source, (2) multiple
queues at the CDL-NI, (3) a CDL manager, (4) forward error correction at the CDL-NI,

and (5) real-time compressed video applications at each end. = The real-time video

- applications require the implementation of both the sending and the receiving entities.

The sending application must make the five layers of coded information available to the
transmission mechanism while the receiver must extract the data from the packets and
separate it for use in a reconstruction algorithm. The packets generated by these
applications must be in a standard format with fields specifying the compression level and
sequence number of the information the packet contains.

Finally, it is essential that the simulation involve actual video data to allow
subjective, as well as, objective analysis of the received data. This requires integration
of the compression/decompression algorithm implemented in MATLAB and the OPNET
simulation environment. The data is analyzed in terms of visual image quality

(determined by the user) as well as packet/data loss rate and signal-to-noise ratio.

10

III. REQUIRED APPLICATION AND NETWORK SUPPORT

This chapter provides the application and network support required by the solution
to the problem presented in Chapter II. Specifically, the first section addresses the
compression method applied to the image data to generate the data to be transmitted. The
second section looks at the method of link quality monitoring utilized by the simulation
model and presents some of the issues that need to be addressed when designing a link
monitoring mechanism. The third section describes the general error correction model

employed by the simulation.
A. IMAGE COMPRESSION

This thesis treats a video session as the transmission of a series of individual
images. Although the work specifically deals with still images, it is assumed that
multiple transmissions of these images constitute a single video session. The term video
is used throughout this work to emphasize this notion.

The image compression algorithm employed in this thesis has been proposed by
Carvahlo [Ref. 11]. This algorithm applies a multi-resolution coding scheme to the output
of a two-dimensional discrete wavelet transform. This transform is used to generate a
pyramidal decomposition of the original image data. This section discusses the suitability
of the compression scheme for the proposed real-time mechanism.

The continuous wavelet transform was developed as an improvement over the
short time Fourier transform [Ref. 13]. Both methods seek to transform a non-stationary
signal into the frequency domain by breaking the signal into blocks that are then assumed
to be stationary. The major drawback of the short time Fourier transform is that the
higher frequencies suffer from poor time resolution while the lower frequencies suffer
from poor frequency resolution. This is due to the fixed size of the time windows applied

to the data. The wavelet transformation overcomes this difficulty by varying the size of

11

the time windows while still maintaining a fixed time-bandwidth product. Thus, smaller
time windows in the higher frequencies provide better time resolution, and larger time
windows (smaller frequency windows) provide better frequency resolution in the lower

frequencies. An illustration of this approach is provided in Figure 1.

frequency frequency
.

L
!
l
|
i
|
|
|
]
i
|

Short Time Fourier Transform Wavelet Transform

Figure 1. Short Time Fourier Transform vs
Wavelet Transform

The continuous transform must be discretized to allow the digital processing of
signals. This is accomplished using a multi-level pyramidal decomposition proposed by
Mallat [Ref. 12]. This method uses a series of orthogonal high-pass and low-pass filters
to generate the decomposition of the signal into a set of orthonormal basis functions [Ref.
13]. It turns out that better results can be achieved by relaxing the orthogonality
requirement in the filters. This allows the use of a set of linear phase filters known as
biorthogonal filters. The use of these linear phase filters allows for theoretically exact
reconstruction [Ref. 14]. In practice, both the quantization error and the need to extend

the image at the boundaries limit the actual performance of the decomposition [Ref. 15].

12

This wavelet decomposition can be extended into two dimensions by assuming that the
filters are separable and applying four separate filtering operations.

A multi-resolution sub-band coding method is utilized to achieve the desired
compression. The resultant wavelet decomposition is divided into five resolution levels.
The resolution levels are based on the energy levels in the decomposition, one being the
lowest and five being the highest. Experimental image data has shown that the lower
frequency components comprise the majority of the information in an image [Ref. 15].
As a result, the lowest resolution level is always comprised of the low frequency
components. Level two adds the next three highest energy components to the transmitted
image while the remaining three levels each add four additional components. Figure 2
illustrates this compression scheme. Thus, transmitting at resolution level one

corresponds to the maximum compression (16:1) while transmitting at level five

Tepresents zero compression.

Decreasing Energy

N

R S

> r’ » rb [
b

|
L

— Resolution Level 4

Resolution Level 5

— Resolution Level 3

Numbers in Blocks Indicate

~ Resolution Level 2 Number of Frequency
Components

— Resolution Level 1

Figure 2. Multi-Resolution Compression Scheme

13

B. LINK MONITORING

The success of the solution proposed in Chapter II relies on a safe and effective
link monitoring mechanism to accurately report the status of the CDL. A safe mechanism
can be defined as a mechanism that ensures acceptable link quality by declaring the link
"down" before performance degrades below guaranteed parameters. An effective
mechanism is tolerant to short-term phenomena occurring on the link [Ref. 16]. There
are two fundamental problems that must be addressed in the design of a link monitoring
mechanism. The first is inaccuracy in the measurement of the metric used to determine
link quality while the second is the occurrence of artificial and undesirable changes in the
link status. The link monitoring mechanism utilized in the CDL model was originally
proposed by Eichelberger [Ref. 17]. The remainder of this section presents thise
mechanism, as well as how it addresses these issues.

The current link monitoring mechanism utilizes fixed length, pseudo-random
monitoring packets that are periodically transmitted across the link. The receiving CDL
Manager checks the arriving monitoring packet and records the result in a fixed length
history. Using this history, in conjunction with a predetermined hysteresis plot, the
receiving CDL Manager determines the status of the link and transmits it to the sending
CDL Manager via a link quality report. This link quality report contains information on
both the status and trend of the link quality.

The monitoring packets are an attempt to address the measurement problem.
These monitoring packets provide a measurement of the bit error rate (BER) across the
link. Three parameters must be specified: the size, insertion rate, and pattern of insertion
for the packets. All three of these are adjustable at simulation set-up time and
subsequently fixed during the simulation. The packet size can be chosen to be large to
give a better estimate of the BER at the expense of overhead across the CDL.
Correspondingly, the packet insertion rate should be chosen to be just high enough to

detect jamming pulses of minimum width while minimizing overhead. The pattern of

14

insertion is a by-product of the configuration of the CDL into a number of transmission
pipes. To be most effective, the monitoring packets should be inserted into the available
pipes based on an empty allocation scheme [Ref. 18].

The history and hysteresis plot are used to minimize undesired changes in the link
status. Both, the length of the history and the thresholds of the hysteresis plot, are
determined at simulation set-up time and subsequently fixed during the simulation. The
length of the history maintained determines how "quickly" the mechanism responds to
changes in the quality of the link. For example, a history of one would cause the link
status to oscillate between up and down with every good/bad packet received. Thus, the
length of the history must be balanced to prevent the status from changing too rapidly or
too slowly in response to changes in the link quality. The hysteresis provides a means
to further refine this response. In essence, it serves as a history of the history. Just as
in the history itself, the hysteresis thresholds affect the response time of the system. If
the thresholds are too close together, the status tends to oscillate unnecessarily and if the
thresholds are too far apart, the mechanism reacts too slowly.

There are two major deficiencies in the present version of the link quality
monitoring mechanism. The first is that the use of periodic monitoring packets does not
provide an exact measurement of the current BER across the link. The second concerns
the history, which does not completely eliminate undesired changes in the reported link
status. These need to be explored and are included in the suggestions for follow-on work

provided in the last chapter.
C. ERROR CORRECTION CODING

. This section briefly describes the validity of the general error-correction model
chosen for the CDL network model. It is important to note that the validity of the
solution proposed in Chapter II itself is ihdependent of the error-correction method

chosen. For the purposes of the simulation, this thesis makes use of a general model that

15

corrects a number of errors proportional to the overhead of the error-correction
mechanism itself. In other words, the larger the overhead introduced by the error-
cdrrecting mechanism, the more errors it will detect.

The error-correction model utilized can be viewed as a convolutional encoder. A
convolutional encoder has the property that for every k bits shifted into the encoder, n bits
(n > k) are shifted out. Thus, a 1/2 rate convolutional code adds one bit of overhead for
each information bit. This allows the overhead to be modeled as a percentage of the size
of the information packet. The CDL simulation model uses a 2/3 rate convolutional code.
Thus, a half bit of overhead is added for each information bit. It is assumed that the
resulting convolutional code is strong enough to correct any errors generated by the
imposed jamming. Given the extreniely high link margin of the CDL, a 2/3 convolutional
code should be able to produce a bit error rate less than 10”. This makes the above
assumption reasonable given the sizes of the packets used in the simulation. At the
expense of increased delay, an interleaver should be added to the system to minimize the

impact of burst errors.

16

Baasd

IV. CDL MODEL OVERVIEW

This chapter provides an overview of the model of an internetwork that uses the
CDL constructed in OPNET. Together with the user's guide in Appendix A, it provides
the reader with the information necessary to understand and utilize this model. This
chapter also provides the background and motivation for the various decisions made
during the development of the model. It is vital that the reader cover this material, as
well as the detailed explanations of the next chapter, prior to making any modifications
to the model. The first section presents the flow of data in the model, which is a
presentation of the components and connectivity encountered in the actual image data
transmission. The second section outlines the control information flow, which is a
description of the components and connectivity required to facilitate the establishment and
maintenance of the data flow. The third section describes the critical network procedures
performed by the model.

Chapters IV and V make use of italics and quotes to differentiate between the
different types of components within an OPNET model. Processes and states will be
expressed in italics, while "packets”, "fields", and "attributes” will make use of quoted
italics. Throughout this chapter reference is made to specific components of the
simulation model which will be discussed in greater depth in the next chapter. The reader
should treat this chapter as an overview, setting the stage for the next chapter and, upon

completion, is encouraged to revisit this chapter.

A. DATA FLOW

The data flow for the CDL model is illustrated in Figure 3. Without a loss of
generality, this figure and the following discussion assume the transmission of real-time

image data from a station on the collection platform to a station on the surface platform.

17

{ Comprcsscd 1 ﬁ’[’oken/lcaky\ i e { mac | ; | DL I
| S\Lfg:r ; Qekﬂ/] { source | I i ‘\u FDDI K ' Manager |
N
‘ * Application; : General
Sending Station | Queues | | Queue

h

.Transmim.-rsl
[S |

CDL

Receiving Station ‘ \
i Receivers |

! !

| e | / : | K
Video ' sink t mac E » FDDI I Mgrll)a;cr 1
Receiver SR [

N~

Figure 3. CDL Data Flow Diagram

The image data is placed into the source queue located within the token-leaky
bucket of the sending real-time application. This queue is assumed to possess the
capacity to buffer the maximum amount of data contained within a single image. The
output from the decomposition/compression routine . is loaded into this queue according
to resolution level. The level one resolution packets are placed at the head of the queue,
while the level five packets are placed at the tail of the queue. The queue is flushed and
reloaded with the arrival of each new image. Upon transmission, the packets pass
through the token-leaky bucket and are presented to the logical link control (lic) and
medium access control (mac) layers. In the case of the CDL model, a FDDI LAN resides
at this mac layer. The outgoing packets are encapsulated in FDDI frames and forwarded
to the local CDL manager.

At the local CDL manager, incoming frames destined for the opposite LAN are
demultiplexed according to the source address. A real-time data packet is placed in the

queue reserved for the traffic from its sending application. Forward error correction is

18

applied to the packet if the forward error correction mechanism is activated. Finally, the
packet is assigned to a CDL pipe based on an empty allocation scheme and transmitted
across the CDL according to the transmission rate for its particular queue.

At the receiving CDL manager, the packet is placed on the attached LAN and sent
to the destination application. Upon reaching the destination, the real-time data packet
is forwarded to the compressed video receiver where the appropriate statistics are gathered

and the packet is discarded.
B. CONTROL INFORMATION FLOW

The control information flow for the CDL model is illustrated in Figure 4. This
figure and the subsequent discussion outline the control information flow required to

transmit real-time data packets between two LANs across the CDL.

Control — Control [—ﬁ

1 ! Packet ‘ ; Packet . |
i Token/Leaky KH ~ Receiving |
! Bucket | ‘ CDL ; !

|
. Applicati ¢
‘ | l Manager | pplication |
N | !
| |
Interrupt .. Intermupt
-~ \‘
| F%rrv::d Application
! Correction Queues
S E——— |

Figure 4. Control Information Flow Diagram

The CDL manager exchanges control information with the sender's token-leaky
bucket and the receiver's compressed video receiver through the use of control packets

transmitted across the LAN. For the receiving application, the control packets must be

19

transmitted across the CDL. This control packet specifies the maximum delay bound that
is encountered by the real-time data packets that are transmitted through this flow
establishment. For the sending application, the token-leaky bucket sends a request for a
real-time data transfer to the local CDL manager when the application generates image
data for transmission. The CDL manager replies with a control packet containing the
average and peak data rates assigned to the application. This control packet is also used
to dynamically alter these rates when required by the CDL manager. If these rates
represent a reduction in the bandwidth assigned to the application, the application must
respond with an acknowledgement packet. This acknowledgement is only required for
a reduction in transmission rate because the CDL manager can increase its bandwidth
before the sender increases the transmission rate, but it cannot decrease its bandwidth
before the sender decreases the transmission rate.

The CDL manager uses interrupts to exchange control information with the local
processes resident within the CDL manager. It enables/disables the forward error
correction algorithm,by setting or clearing an FEC flag that is read by the forward error
correction mechanism. Similarly, the CDL manager controls the rates out of the
application queues by designating the transmission rate variables for the appropriate

queues.

20

C. EXPLANATION OF PROCEDURES

This section presents the four essential procedures that must be executed by this
network model. They are:

(1) The request for a real-time data transfer initiated by the sending application.

(2) The normal transmission of real-time image data across the CDL.

(3) The network's response to the detection of jamming across the CDL.

(4) The network's response to the suspension of jamming across the CDL.
This section serves as an overview, laying out the steps the model goes through without
going into the details of how they are accomplished. The details specific to each module

are covered in the next chapter.

1. Request to Establish a Real-Time Flow

The following is a description of the procedure undertaken when an application
seeks to establish a real-time data flow across the CDL. The sending application sends
a request for a real-time data transfer to the CDL Manager responsible for the LAN. This
request is a control packet of the format "compr_vdo_cntrl_pkt" that contains the source
and destination addresses for the flow, as well as the desired and minimum acceptable
data rates. For simulation purposes, the desired rate is calculated to allow the
transmission of all five layers of decomposed image data in the period between image
arrivals. The minimum acceptable rate represents the transmission of only level one in
this time frame. Upon reception of the request, the CDL Manager accepts or rejects the
request based on available bandwidth at the CDL interface. Presently, the admission
control algorithm is not implemented and, accordingly, the CDL Manager accepts all
requests. It is envisioned, as part of the required follow-on work, that a rejection will

trigger a renegotiation process.

21

If the request is accepted, the CDL Manager reserves the required bandwidth based
on the minimum data rate and the overhead associated with the implemented forward
error correction algorithm. The CDL Manager stores the source and destination addresses
as well as the desired and minimum data rates in a real-time application database. It uses
this information and its knowledge of the network topology to calculate a maximum delay
bound based on the work of Parekh and Gallager [Ref. 3]. This delay bound is
transmitted to the destination application, which uses it to set its playback point. The
CDL Manager sets up a separate queue for the new application and initializes its
transmission rate based on the flow's average packet size combined with the overhead
added by the FDDI and PPP protocols. The leaky and token bucket rates are calculated
and transmitted to the sending application within a "CDL_mgr_cntrl_pkt". The leaky
bucket rate is set to the maximum data rate supported by the attached LAN, while the
token bucket rate is set to the desired rate, or the minimum rate in the presence of
jamming, of the application. Upon receiving the data rates from the CDL manager, the
token and leaky buckets convert them to token rates and begin transmission of data
packets. At this point, a real-time flow has been established between the appropriate
applications. A summary of the procedure for the establishment of a real-time flow is

shown in Figure 5.

Sending Application sends request for a real-time data transfer to CDL Manager
CDL Manager calculates available bandwidth
CDL Manager accepts/rejects request based on minimum acceptable data rate
Rejected:
4. CDL Manager informs Sending Application of rejection
5. Application can repeat request with adjusted rates
(b) Accepted:

4. CDL Manager calculates bandwidth allocation and stores data rates
CDL Manager sets flow rate at local queues
CDL Manager sends maximum delay bound to Receiving Application
CDL Manager sends rate control parameters to Token-Leaky Bucket (TB-LB)
TB-LB begins transmitting upon reception of rate parameters

W

—~
»
~

PN W

Figure 5. Request to Establish a Real-time Flow

22

2. Normal Transmission

The following is a description of the procedure for normal transmission of real-
time compressed video packets across the CDL. Initially, the MATLAB data files are
generated by the appropriate MATLAB video compression algorithm. These files consist
of a vector for each component generated by the decomposition routine. These
components are ordered according to the resolution levels specified by the compression
routine. Packets are created from these files based on two parameters: (1) the image
number and (2) the sequence number of the packet within the image. These parameters
are placed in the header of each fixed size packet and placed in the application queues
within the token bucket module. The packets are then loaded into the application queue
based upon resolution level. Thus, the number of levels transmitted is determined by the
rate at which the queue is emptied. These queues are flushed and reloaded at the arrival
of each new image. The packets are encapsulated into FDDI frames by the mac process
and transmitted to the CDL network interface (cdl-ni) via the local FDDI ring. Upon
arrival at the cdl-ni, the packet is sent to the appropriate queue within the CDL Manager
based on its source address. Upon departure from the CDL Manziger, the packet is
encapsulated into the PPP protocol and FEC is applied, if appropriate. As the individual
queue rate permits, the packet is allocated to a bit pipe and transmftted across the CDL.
If the packet survives the transmission across the CDL, the FDDI packet is removed from
the PPP protocol and forwarded to the destination node along the destination's FDDI rlng
At the receiving application, the data packet is decapsulated and passed to the
cmpr_vdo_rcvr. The cmpr_vdo_rcvf logs the packet into its output data file, gathers the
appropriate statistics, and destroys the packet. This data file is subsequently used by the
MATLARB reconstruction routines to reproduce the transmitted images. A summary for
the procedure for normal transmission of a real-time application across the CDL is shown

in Figure 6.

23

MATLAB data files generated
Load application queue with packets composed of image and sequence numbers
Packets transmitted through TB-LB
FDDI encapsulation by mac
Packet transmitted to CDL-NI via FDDI ring
Packet sent to appropriate application queue
FEC applied, as required, upon departure of queue
- Packet transmitted on CDL
10. Packet received at receiving CDL Manager
11. Packet transmitted to Receiving Application via FDDI ring
12. Receiving Application checks delay
(@) Delay exceeds playback point:
13. Packet is destroyed without recording contents
(b) Delay does not exceed playback point:
13. Receiving Application records packet and destroys it
At Termination of Simulation:
14, List of recorded pointers is used to recreate MATLAB data files

WA NRN e~

Figure 6. Normal Transmission Across the CDL

3. Detection of Jamming

The link monitoring mechanism embedded within the CDL Manager allows it to
detect the presence of jamming on the CDL. When the link monitoring mechanism
reports that the link is "bad", the CDL manager activates the forward error correction
algorithm. This causes the manager to loop through the real-time application database
and send control messages to all the current real-time applications. These control packets
contain the new leaky and token bucket rates to account for the additional overhead of
the FEC bits. The leaky bucket rate typically remains the same, while the token bucket
rate is changed to the application's minimum acceptable rate. Upon reception of the lower
data rate, the token bucket converts this rate to a token rate by dividing by the size of a
token (in bits) and sends back an ack to the CDL Manager. The process flushes its

token bucket and application queue and subsequent token arrivals are ignored until the

24

next image arrives. This has the effect of resetting the application, allowing the new rate
to take effect immediately upon the arrival of the next image.

Upon reception of the ack from the real-time application, the CDL Manager
implements the forward error correction at the CDL interface. The appropriate queue
transmission rate is set to the minimum data rate plus the overhead corresponding to the
FDDI and PPP packets and the forward error correction scheme. The queue is flushed
to prevent the backlog of old image data and a flag is set within the real-time application
database to denote the use of FEC for this particular application queue. Thus, as the
FDDI packet is transmitted, it is encapsulated in PPP and the size is adjusted to reflect
the FEC overhead. An "FEC" field attached to the packet is set to denote the level of
FEC protection. This level is expressed in terms of a ratio of acceptable errors per bit.
This "FEC” field would not exist in an actual implementation, it is used in the simulation
environment to artificially provide error protection for the packet. A summary for the

procedure for the detection of jamming is shown in Figure 7.

CDL Manager detects unacceptable BER from link monitoring mechanism

CDL Manager sends minimum rate control parameters to LB-TB

LB-TB sends acknowledgement to CDL Manager and sets a new transmission rate
Upon reception of ack, CDL Manager sets flow rate at local queues

CDL Manager enables FEC

bl

Figure 7. Detection of Jamming

4. Suspension of Jamming

The CDL Manager recognizes the suspension of jamming when the link
monitoring mechanism reports the link as "good." The CDL Manager then initiates the
termination of the FEC algorithm. The manager loops through the real-time application

database and sends control packets to the current real-time applications on its LAN.

25

These packets contain the original desired token bucket rate for each application. No
acknowledgement is required because the FDDI ring is assumed error-free. Thus, the
CDL manager immediately terminates FEC for the application queues and sets the queue
transmission rates to reflect the desired data rate without the overhead of forward error
correction. Upon reception of the control packet, the token bucket converts the data rate
to a token rate and flushes the token bucket and application queues. A summary for the

procedure for the suspension of jamming is shown in Figure 8.

CDL Manager detects acceptable BER from the link monitoring mechanism
CDL Manager disables FEC

CDL Manager sends initial desired rate control parameters to TB-LB

CDL Manager sets flow rate at local queues

Upon reception of new rate, LB-TB converts to token rate and applies it

MBS

Figure 8. Detection of Suspension of Jamming

26

V. CDL MODEL DETAILS

This chapter provides detailed explanations of the various components of the
Common Data Link model in OPNET. In addition, it looks at the programs required to
interface the OPNET output with the MATLAB compression/decompression algorithms.
This thesis has completely overhauled the model as it existed [Ref. 17, 19, 20] to make

it more efficient and logical. As a result, all aspects and components of the model are

discussed and explained in detail. The only major portion of the model that has not been
revamped is the underlying model of the FDDI network that serves as the local LAN at
both ends of the physical link. In addition, although reorganized, most of the link
monitoring mechanism remains intact. For a detailed discussion of the FDDI network and
its underlying philosophy, the reader should refer to the OPNET Models Manual [Ref. 21]
and the theses of Nix [Ref. 20] and Karayakaylar [Ref. 19].

The chapter is divided into three major sections corresponding to the major
divisions of the model. The first section addresses the real-time FDDI station. This
module models the real-time compressed video application and its token-leaky bucket
interface to the FDDI ring. The next section investigates the CDL Network Interface.
This module provides all the elements necessary to interface the local FDDI ring to the
Common Data Link. It is composed of an FDDI station with an attached CDL Manager.

The final section deals with the MATLAB code generated to allow the results of the
Carvalho [Ref. 11].

| OPNET simulations to be applied to the MATLAB reconstruction algorithms written by
A. REAL-TIME FDDI STATION

For applications requiring real-time guarantees, a modification must be made to
the standard OPNET FDDI station. This new station is referred to as a real-time FDDI
station and includes a token/leaky bucket to shape the traffic flow at the FDDI network

27

interface. In this thesis, the real-time compressed video application resides within this
station. The mac (medium access control) serves as the interface to the FDDI network.
A'packet is generated by an ideal source (a source with no associated delays or overhead)
and sent to the token bucket to mark the arrival of each new image. The token bucket
creates the application queues and initiates the flow establishment procedure. Once the
connection has been established, the token bucket is responsible for enforcing the average
data rate. The token bucket transmits the application data packets to the leaky bucket,
where the peak data rate is enforced. The packet is then processed by Illc_src, which acts
as a service access point for the application into the mac. The mac encapsulates the
packet in the FDDI protocol and is responsible for transmitting the packet along the FDDI
ring.

Upon the arrival of a packet from the FDDI ring, the mac decapsulates it and
sends it to the lc_sink. The llc_sink acts as a filter, forwarding real-time packets to the
compressed video application, while recording statistics and destroying the remaining
general traffic packets. The cmpr_vdo_rcvr is responsible for the processing of all the
received real-time packets. This includes logging the image information needed to
reconstruct the image and recording the appropriate statistics to generate the required
throughput and delay data.

The control path within this module is very similar to the data path. Control
packets are generated in the token bucket process, where they are designated as control
packets and filled with the appropriate information. The packet proceeds to the mac,
where it is encapsulated and addressed to the local CDL manager. The packet is
subsequently transmitted along the FDDI ring. Arriving control packets are routed
through the sink and the compressed video receiver. The compressed video receiver
sends them to the leaky and token bucket processes, where the information is extracted.

Figure 9 presents the real-time FDDI station module.

28

&)
&

® &
M=
oo

Y

tkn_bkt lkylbkt llec_sre mac phy_rx
empr_vdo_revr llc_sink

Figure 9. Real-time FDDI Station

The processes lic_src and lc_sink are modifications of the corresponding
processes in the original OPNET FDDI model. The source has been modified to allow
the presentation of an independent application to the FDDI ring. In addition to being able
to generate non-real-time simulation packets, the llc_src can also receive packets from a
higher layer and pass them onto the mac process. The sink process has been modified
to achieve the same goal in the reverse direction, passing designated packets to the higher
application, while processing and destroying the general simulation packets destined for
this station. The phy_tx and phy_rx are the point-to-point transmitter and receiver
processes, respectively, that represent the physical FDDI ring. The following sections will
discuss the token/leaky bucket processes and the compressed video receiver process in
detail. The mac process will be discussed in the following chapter as part of the network
interface to the CDL.

1. Token/Leaky Bucket
The token/leaky bucket implementation is realized by two separate processes: (1)

il_bkt_tow (the token bucket) and (2) t_bkt_std (the leaky bucket). Both of these

processes are extensively modified versions of a #]_bkt process originally designed by

29

Nishimura'. Combined, these processes form the token/leaky bucket traffic shaping

mechanism. Essentially, this mechanism enforces a predetermined peak and average data

flow for the attached application.
a. Token Bucket

The token bucket process (zI_bkt_tow) is tasked with three major functions:
(1) enforcing the mean data rate for the attached application, (2) maintaining the
application data points, and (3) creating/destroying the application's control packets.

These functions are discussed in the context of the process state diagram, shown in Figure

10.
@
bd
(send) <

N
WJoin) (CONTRYL_PXT)
N 1 \

1
1
N 1

- === geiny - ——of|
— —(CONTROL-DKE) ~ —

ey o]

Figure 10. Token Bucket State Diagram

“This was designed as part of an EC4850 class project entitled "Traffic Shaping on a
TCP/IP Based Internet Model" by LT Bryan Nishimura at the Naval Postgraduate School,
September 19, 1994.

30

Upon simulation initiation, the process moves from the init state to the
send_request state. In this state, a control packet, "cmpr_vdo_cntrl_pkt" (Figure 11), is
generated and sent to the local CDL Manager as a request to establish a real-time data
transfer. The "desired_rate” and "min_acceptable_rate" parameters are user-defined. The
process then moves to the await_reply state, where it sits idle, awaiting the CDL
Manager's reply. The arrival of a control packet, "CDL_manager_cntrl_pk:" (Figure 12),
forwarded from the leaky bucket process, triggers a transition to the reply_rcvd state. If
the "join" field is set to "1", then the process records the "foken_rate” and transforms it
into a token rate by dividing it by the token size (in bits). This token rate is used to
schedule an interrupt for the arrival of the first token into the bucket. If the specified rate
is less than the current rate, the process sends an acknowledgement back to the CDL
manager prior to transitioning to the idle state. In addition, the token bucket and
application queue are flushed and subsequent token arrivals are masked until the arrival
of the next image in the arrival state. If the "join" attribute is not set to "1", then the

process returns to the send_request state, reinitializing the joining procedures.

Field Name Type size (bits) Default value Default set
contrel _packet integer 0 1 set

sre _addx integer 16 0 wnset
dest_addx integer 16 [unset
desired_rate double 16 [unset
min_acceptadle_rate double 16 0 unset
packet_size integer 16 0 unset

ack integer 1 [set

Figure 11. "cmpr_vdo_cntrl_pkt"

Field Name Type Size (bits) Defanlt Value Default Set
control packet integer set
token_rate double 16 1000000 set

leaky_rate

doudble

16

1000000

set

join

integer

1

0

set

31

Figure 12. "CDL_manager_cntrl_pkt"

The idle state is used to allow the process to await the arrival of the next interrupt.
The three possible interrupts are: (1) arrival of a control packet, (2) arrival of a packet
from the ideal source process, and (3) a self-interrupt. The control packet forces a
transition back to the reply_rcvd state which allows processing of the control packet from
the CDL Manager. A packet from the ideal source generator signifies the arrival of a
new image, while the self-interrupt could signal the arrival of a new token or the

completion of transmission of a particular packet.

Field Name Type Size (bits) Default value Default Set]
dmg_num integer [] 0 set

1vl_num integer 8

sgmt_num integer 24

0
o

sgmt_size integer 16 [] set
cr_time double 0 0
[}

control _packet integer 0

Figure 13. "cmpr_vdo_fr"

The arrival of a new image results in a transition to the arrival state. The arrival
state flushes the current application queue and refills it with data packets of the form
"empr_vdo_fr" (Figure 13). The physical packet size is determined by the following

equation:

pkt size = (current pkt size) - (size of sgmt_size fld) + (value of sgmt_size fld) (2)

Once created, the packets are inserted into the application queue in an order
corresponding to the applicable resolution level. The process then moves to the svc_pk?
state, which determines if there are enough tokens in the bucket to send the packet at the
head of the queue. If there are enough tokens, the process transitions to the process state,
otherwise it returns to the idle state, awaiting the arrival of more tokens. The process
also transitions directly to the idle state when svc_pkt is entered and there are no packets
queued for transmission. The process state calculates the time of transmission for the

packet at the head of the queue based on the packet size and the user-defined "send_rate”.

32

The state then schedules a self-interrupt to mark the end of the transmission time and
transitions back to the idle state.

A self-interrupt signifying the end of a packet transmission causes the process to
transition into the send state through the s_inspt state. The send state removes the packet
at the head of the queue and forwards it to the leaky bucket process. From this state, the
process returns to the svc_pkz state to determine if another packet can be transmitted.

A self-interrupt marking the arrival of a new token causes the process to transition
into the add_tkn state through the s_intpr state. Provided the user-defined maximum
bucket_size is not exceeded, the token is added to the bucket. Prior to leaving this state,
an interrupt is scheduled for the next token arrival. This state also exits to the svc_pkt

state.
b. Leaky Bucket
The leaky bucket process (¢I_bkt_std) is tasked with enforcing the peak data rate.
This peak data rate is normally set to the maximum data rate supported by the attached

LAN (100 Mbps for a FDDI ring). This process will be discussed in the context of its

state diagram, shown in Figure 14.

33

[ve_pkt]

s

Figure 14. Leaky Bucket State Diagram

Upon simula‘ltion initiation, the process moves directly from the init state to the
idle state. In the idle state there are two possible events that can occur: (1) the arrival
of a packet or (2) a self-interrupt. The arriving packet can be a control packet from the
local CDL Manager or a data packet from the token bucket process. The self-interrupt
can signify the completion of the transmission of a packet or the arrival of a new token.
The arrival of a control packet results in transition to the control state where, if the "join"
field is set to "1", the "leaky_rate" is extracted and transformed into a token rate
(explained in the previous section). This token rate is used to schedule the arrival of the
first token. In addition, the control packet is then forwarded to the token bucket process.
The leaky ‘bucket process handles arriving data packets and tokens in the same manner
as the token bucket process (described above). The only exception is that an arriving
token clears any previous tokens in the bucket. As a result, the leaky bucket will never

contain more than one token. This allows the mechanism to enforce a peak data rate.

34

2. Compressed Video Receiver

The compressed video receiver process (cmpr_vdo_rcvr) is tasked with the
functions of (1) gathering the desired compressed video packet statistics and (2) creating
a file that can be used by MATLAB to reconstruct the transmitted images. The process

consists of three states as illustrated in Figure 15.

{default)

-7
P

TN »
q | izt - - - <detonity - ~ ol(DT5cARD)
Q : \

- 7
N 7

)

(

Figure 15. Compressed Video Receiver
‘State Diagram

The discard state serves as the central state within the compressed video receiver.
This state is re-entered with the arrival of each new compressed video packet, until the
"end_of_simulation” signal causes a transition to the stats state. The discard state records
the creation time and the image and sequence numbers contained within each packet.
Using the creation time, coupled with the current time, the mean and instantaneous delays
are calculated and recorded for future analysis. The mean throughput is also calculated
and recorded. The image and sequence numbers for each packet are recorded in an
output file specific to each compressed video application and specified by the user at
runtime. This file is in a vector format suitable for integration into the MATLAB

recomposition routines. It is opened in the init state and closed in the stats state.

35

B. CDL NETWORK INTERFACE

The Common Data Link Network Interface (CDL-NI) serves as the interface
between the local LAN and the Common Data Link. The module is essentially composed
of an FDDI station connected to the CDL through a proéess called the CDL Manager.
The phy_tx, phy_rx, mac, llc_src, and llc_sink make up the FDDI station. The mac and
llc_sink have been modified to allowv connection to the CDL Manager. The CDL
Manager is responsible for handling all traffic coming from and going to the CDL, which
is modeled by the pr_# and pt_# processes.

Figure 16. CDL Network Interface for the
Collecting Platform

The llc_sink has been modified to allow it to send control packets to the CDL
Manager as required. This is achieved by a filtering operation that detects control packets

and forwards them to the CDL Manager via the data path between the two processes.

36

Other general traffic packets destined for this station are processed by the sink. The mac
is discussed in a subsequent subsection.

The physical data link is modeled by the point-to-point transmitters and receivers
(pr_# and pr_#, respectively). The single receiver in the collection platform cdl_ni
(shown in Figure 16) represents the command link from the surface to the collecting
platform. This is a 10.71 Mbps link that has forward error correction applied to it. The
four transmitters represent the 274 Mbps return link. These different receivers are used
to model a few of the channels, or pipes, available in the return link. The sum of the
bandwidth of the four receivers is equal to the total bandwidth of the link. The
transmitter queue processes (tx_qg_#) are used to queue up PPP packets scheduled for the
respective transmitters. The queues receive a statistic from the attached transmitter
notifying them that the transmitter is either busy or idle. When the transmitter is idle, the
queue will send the packet at its head. In addition, the queue sends a statistic to the CDL
Manager informing it of the number of bits currently buffered in the queue. The number
of transmitters can be altered by placing the appropriate number of point-to-point
transmitters and transmitter queues in the cdl_ni module and entering the number of
transmitters in the "number_of_xmtrs" attribute of the CDL Manager process. A
corresponding number of receivers must be added to the cdl_ni at the other end of the

link. The CDL Manager is discussed in a subsequent subsection.
1. MAC

The mac process serves as the interface to the local FDDI ring. All FDDI packets
that arrive at the cdl_ni, whether from the local ring or the CDL, are processed by the
mac. The mac at this interface is a modified version of the mac present at a standard
FDDI station. The fundamental difference is that the mac resident at the cdl_ni has the
additional capability to handle packets destined for, or arriving from, the CDL. The

following discussion briefly covers the basic functionality that is common to all mac

37

processes and then expand upon the items that have been added by this thesis. Figure 17

presents the mac process state diagram.

<

’
7

(spawn_token) !
'
\
\
h)

(default)

Figure 17. MAC Process State Diagram

The functions directly related to the FDDI ring are discussed in the OPNET
Models Manual [Ref. 21] and elaborated on in the thesis of Karayakaylar [Ref. 19].
Essentially, the process, if designated as a spawn_station, spawns a token and the token
is circulated around the ring. When the token arrives at the current station, it is captured
and the station begins transmitting its synchronous and asynchronous data in accordance
with the specifications of a FDDI ring. The synchronous bandwidth is a user-defined
attribute, "mac_sync_bandwidth.". Upon completion of transmission, the station forwards
the token to the next station on the ring. The mac is responsible for maintaining all
counters associated with the FDDI ring. When a packet destined for this station arrives
on the ring, it is removed, decapsulated, and forwarded to the llc_sink. When a packet

arrives from the lic_src, it is encapsulated and queued up for transmission on the ring.

38

Each packet contains a flag specifying whether it represents synchronous or asynchronous
data.

| The mac process has been modified to allow it to process packets associated with
the CDL. The mac treats the CDL as another physical transmission medium much like
the attached FDDI ring. FDDI packets arriving over the CDL are forwarded to the mac
process, where the destination address is examined. If the packet is destined for a station
on the local LAN, the packet is queued for transmission over the local FDDI ring.
Otherwise, it is returned to the CDL Manager. An identical filtering process is applied

to packets arriving from the local FDDI ring.
2. CDL Manager

The CDL Manager is the heart of the CDL network interface. This process serves
as the manager for both the CDL and the attached local LAN, by providing the bandwidth
allocation for the CDL and the attached FDDI ring. In addition, the CDL Manager
contains the link monitoring and forward error correction mechanisms. These two
mechanisms are discussed in greater detail in the following sections. This section
discusses the details of the CDL Manager itself. The process state diagram (Figure 18)
was designed to permit easy extensions to facilitate follow-on work. It was also designed

to be symmetric in the sense that the CDL Manager is identical at both surface platform

and the collection platform interfaces.

Juorzzox

lstaxt #]

Figure 18. CDL Manager State Diagram

Upon simulation initiation, the process moves from the init state into the idle state.
There are three events that cause a transition out of this state: (1) the arrival of a packet,
(2) an update from the transmitter queues, and (3) a self-interrupt to mark the completed

transmission of a previous packet.

a. Packet Arrivals

An arriving packet can come from one of three possible sources: the mac,
the sink, or the CDL. Each arrival forces a transition into a correspondingly named state.
In the mac state, the arriving packet is filtered by source address to determine if it is a
real-time application packet. If the source address is contained in the real-time database,
the packet is added to the appropriate real-time queue. Otherwise, the packet is placed

in the general application queue (subqueue[0] within the process). If the queue was

40

previously empty and no packets are presently being transmitted, a self-interrupt is
generated to trigger the transmission cycle. In the sink state, the arriving packet is
assumed to be a control packet. This packet can either be a request for real-time data
transfer from a real-time application or an acknowledgement of a reduction in allowed
transmission rate from an existing real-time application. In the former case, the source
and destination addresses, the desired and minimum acceptable data rates and the packet
size are removed from the "cmpr_vdo_cntrl_pkt” and stored in the real-time application
database. The CDL Manager creates a "CDL_manager_cntrl_pkt" and sets the "join"
field to one to signify that a real-time connection will be established for the application
in question. The "foken_rate" field is set to the desired data rate, while the "leaky_rate”
is set to the maximum data rate provided by the local LAN, in this case: 100 Mbps. The
control packet is encapsulated in a FDDI frame and forwarded to the mac process. A
real-time queue is set up for the applicable application, its data rate is calculated using
the overhead of the FDDI ring and the PPP protocol, coupled with the packet size
information stored in the database. The general application queue data rate is reduced by
a corresponding amount. If the arriving control packet is an acknowledgement of the
reduced transmission rate, the CDL Manager applies the forward error correction scheme
to all subsequent packets from that real-time application prior to transmission.

A packet arriving from the CDL forces a transition into one of two different states
based on the type of packet: data packet vs link monitoring packet. A data packet causes
a transition to the data state, which decapsulates the FDDI packet and forwards it to the
mac process. A link monitoring packet causes a transition into the monitor state, which

will be explained in greater detail in the next section.
b. Transmitter Update

An transmitter queue update is triggered by a change in the queue

statistics supplied by the transmitters. This causes a transition into the xmtr_update

41

state. In this state, a buffer is maintained that has an entry for each transmitter queue.
The received statistic informs the CDL Manager of the number of bits currently
contained in the applicable transmitter queue and is stored in the appropriate buffer
entry. This information is utilized by the empty allocation transmission scheme

discussed in the next paragraph.
c. Completion of Packet Transmission

A self-interrupt is generated whenever the CDL Manager is capable of
transmitting another packet to the transmitter queues. This interrupt causes a transition
into the xmit state followed by a transition into either the xmit_data or the
xmit_monitor state. The former is the default transition, while the latter is entered
when the interrupt signals the periodic transmission of a link monitoring packet, which
is initialized in the init state. In the xmit_monitor state, a "ppp” packet is generated
and the fields "pid_h" and "pid_I" are set to indicate a link quality monitoring packet.
This packet is placed at the head of the general application subqueue to force earliest
possible transmission and guarantee that the link monitoring mechanism receives the
required bandwidth dictated by its transmission rate. If no packets are presently in
awaiting transmission, a transmit interrupt is generated prior to transitioning back to
the idle state. In the xmit_data state, the interrupt code number is used to determine
which subqueue is available for transmission. The packet at the head of the applicable
subqueue is removed and encapsulated in a "ppp_ml" packet for transmission on the
CDL. Forward error correction is applied based on a FEC flag maintained for each
subqueue within the real-time application database. (The FEC mechanism is discussed
in greater detail in the next section.) Two load balancing algorithms are available to
determine the destination transmitter queue. The first uses a round robin scheme,
while the second, called the empty allocation scheme, chooses the transmitter queue

currently buffering the smallest number of bits. To effectively make use of the

42

concept of bandwidth allocation, the second algorithm is utilized. An interrupt is set
for the applicable subqueue to signal the end of the transmission. This transmission
time is based on the size of the packet and the subqueue transmission rate (contained
in the real-time application database). A flag is used to mark this particular subqueue
as busy. This flag is cleared when the xmit_data state is entered and no packets are

contained in the applicable subqueue for transmission.

3. FEC Mechanism

The forward error correction mechanism is embedded within the CDL Manager.
When the CDL Manager is informed that the link has gone "bad" via a link quality
report, the CDL Manager initiates the forward error correction algorithm. The CDL
Manager cycles through its real-time application database, sending each application a
control message updating its transmission data rate to the minimum acceptable rate
advertised by that particular application. This rate is provided at connection establishment
and stored in the real-time application database by the CDL Manager when it accepted
the request. Upon reception, the leaky bucket and token bucket modules record updated
transmission rates and convert them to token rates. In its role as the control module for
the token-leaky bucket, the token bucket module returns an acknowledgement to the CDL
Manager. This is a "compr_vdo_cntrl_pkt” with the "ack” field set to one. The token
bucket process flushes its token bucket and application queue, allowing the revised data
rate to take effect immediately. Upon reception of the acknowledgement, the CDL
Manager cycles through its real-time application database to locate the appropriate
application. The corresponding subqueue is flushed and its transmission rate is set to this
minimum data rate. The FEC flag is set for this subqueue, which allows the forward
error correction scheme to be applied to all subsequent packets from this subqueue.

The forward error correction scheme is modeled by increasing the size of the PPP

packet by a ratio appropriate to the type of FEC utilized. An "FEC" field (integer, of size

43

zero, for simulation only) is set to denote the level of FEC protection. This field contains
the acceptance threshold, expressed in correctable number of errors per bit, and is used
by the error correction communication pipeline stage to determine whether or not the
packet should be accepted. If the threshold is exceeded, the packet is discarded at the

receiver.

4. Link Monitoring Mechanism

The link monitoring mechanism of [Ref. 17] has been redesigned to make it
symmetric at both ends of the CDL and has been placed within the CDL Manager for
consistency of functional organization. A link quality monitoring packet is sent at a user-
defined rate across the CDL. The CDL Manager at the receiving end determines the
number of errors within the packet and records the value in its history database. A ratio
is calculated that determines the number of packets in error over the length of the
maintained history. When the ratio exceeds a user-defined threshold, the status is
declared as BAD. When the change in this ratio exceeds some user-defined threshold,
a link quality report is transmitted back across the CDL to the sending CDL Manager.
This link quality report provides the status of the link. This status is reported as either
GOOD or BAD with a packet error ratio trend that is either going UP or DOWN. In
addition to the mentioned parameters, the history length and reporting criteria are also
user-defined. For a more detailed discussion of the theory behind the implemented
method of link monitoring, refer to Eichelberger [Ref. 17].

This link monitoring mechanism is embedded in the monitor state of the CDL
Manager process. This state is entered when a monitoring packet or a link quality report
arrives at the CDL Manager. Upon the arrival of a link monitoring packet, the number
of errors are determined and stored in the history database. This value is determined in
the CDL pipeline (discussed in the next section) and maintained by OPNET in the
constant OPC_TDA_NUM_ERRORS. In an actual implementation, this value would be

44

determined by comparing the received packet to a packetized pseudo-random bit stream
maintained by each CDL Manager. The packet error ratio is calculated and if the value
differs from the previous ratio by a user-defined threshold, a link quality report is
generated. This is accomplished by creating a "ppp"” packet with the appropriate values
in the "pid_1" and "pid_h" fields. The "LQR_info" field is set to the current link status
and trend. The status is set to GOOD or BAD based on a user-defined hysteresis. An
UP trend signifies an increasing packet error ratio, while a DOWN trend signifies a
decreasing trend. This packet is placed at the head of the general application subqueue
for transmission.

When a link quality report arrives at the CDL Manager, the link status information
is retrieved from the "LOR_info" field. As required, this information is used to initiate

or suspend the forward error correction algorithm.
5. CDL Physical Pipeline

The physical Common Data Link is modeled in OPNET through the use of a
point-to-point transmitter and receiver connection. In OPNET, a point-to-point link is
realized as a four stage pipeline designed to reflect the characteristics of a physical link.
The pipeline is composed of four separate C routines that are integrated into the OPNET

simulation environment. The four stages are as follows:

(1) Transmission Delay - This stage models the transmission delay
encountered by each packet. The default C routine, dpt_txdel,
implements this delay by making use of the channel attribute "data
rate” and the length of each packet. This routine has not been
modified in the CDL implementation.

(2) Propagation Delay - This stage models the propagation delay

experienced by a packet travelling across the link. The default C

45

routine, dpt_propdel, makes use of the channel attribute
"delay” to apply a constant delay to all the packets. Once
again, this routine has not been modified in the CDL
implementation.

(3) Error Allocation - This stage determines the number of errors
generated in each of the packets. The default C routine, dpt_error,
makes use of the channel attribute “ber” to determine the fixed bit
error rate used in the stochastic error generation process. Coupled
with the length of the packet, the routine is able to calculate a
number of errors to apply to each packet. This routine has been
replaced by the C routine cdl_pt_error which contains the jamming
mechanism.

4 Error Detection and Correction - This stage determines whether or
not the packet will be accepted by the receiver. The default C
routine, dpt_ecc, uses the "ecc” attribute of the receiver as a
threshold to determine the acceptable percentage of bits in error per
packet. This routine has been replaced by the routine cdl_pt_ecc,

which implements the forward error correction scheme.

The modified routines are discussed in detail in the following paragraphs.

a. cdl_pt_error

The cdl_pt_error was originally created as part of the thesis work of
Karayakaylar [Ref. 19]. Unfortunately, the model of jamming presented in the original
thesis is cumbersome and difficult to work with. As a result, the jamming model has
been completely overhauled. The new model is presented in the state diagram of Figure

19. Essentially, the jamming model consists of two states, ON and OFF, representing the

46

status of the modeled jammer. Each state has a user-defined bit error rate, "no_jam_ber"
and "jam_ber", associated with it. This bit error rate is applied uniformly to all channels
modeled within the CDL structure. Thus, the jamming can be seen as an over-all
reduction in the total signal-to-noise ratio of the system which causes a corresponding
increase in the bit error rate. The states are linked by the user-defined probability

transitions, "no_jam_trans" and "jam_trans".

no_jam_trans

N
/ 3 /
{ /

' ON " OFF

!

Figure 19. Jamming State Diagram

The cdl_pt_error routine begins by determining if a change in jammer status has
occurred. This is accomplished by randomly generating a number based on a uniform
distribution from zero to one, inclusive. If the number is less than or equal to the
probability of a state transition, then the jammer is switched to the new state, otherwise
the jammer remains in the current state. The global variable ”janiming" 1s set to one to
signify ON and zero to signify OFF. The appropriate bit error rate is used to compute
the number of errors based on the size of the packet. The OPNET constant
OPC_TDA_PT_NUM_ERRORS is set to this value and assigned to the packet. It is this
value that is used in the next stage to determine whether or not the packet should be

accepted.

47

b. cdl_pt_ecc

The final stage of the pipeline, the C routine cdl_pt_ecc, uses a threshold
to determine if the ratio of bits in error to packet length exceeds an acceptable value. The
default model has been modified to alter the manner in which the threshold is acquired.
An incoming packet is checked to determine if the forward error correction field, "FEC",
has been set. If the field has been set, the value stored in it is used as the error ratio
threshold. If the field has not been set, the "ecc” attribute of the receiver is used as the
threshold. The ratio of bits in error to packet length is computed, and, if the applicable
threshold has been exceeded, the packet is discarded. This is accomplished by setting the
OPNET packet constant OPC_TDA_PT_PK_ACCEPT to OPC_TRUE if the packet is to
be accepted, or OPC_FALSE if the packet is to be rejected. The point-to-point receiver
will handle the packet accordingly. The value in the "FEC” field is set by the CDL
Manager prior to transmission of the packet across the CDL. Its value comes from the

CDL Manager attribute, "FEC Protection”.
C. MATLAB INTERFACE

This section describes in detail the MATLAB 4.1 routines used for the
compression and decompression of the transmitted images. The
compression/decompression algorithms are based on a five level hierarchical compression
scheme utilizing a 15™ order biorthogonal filter. The original compression/decompression
code was written by Carvahlo as part of his thesis [Ref. 11]. This section focuses on the
code generated to implement the interface between the OPNET simulation and the
MATLAB image processing code. It is divided into two parts, a broad overview of the
interface between OPNET and MATLAB, followed by a detailed discussion of the code

generated to implement this interface.

The network simulation takes place within the OPNET simulation environment,

which is not optimally designed to send actual data through the resultant model. In
OPNET, the packet information and appropriate packet parameters are maintained in a
global database. Only the pointer to the database entry is passed around the simulation.
This thesis takes that idea one step further, maintaining a separate database external to
OPNET for the transmitted image data. Thus, the OPNET simulation needs only to
transmit the pointers within this external database. Each compressed video packet
contains a pointer to one hundred data values within the image database. Since each
image value is representable by eight bits, this corresponds to a packet length of 800 bits
plus the "empr_vdo_pkt" header, for a total of 840 bits. The pointers contained in each
received packet are logged into an output file that is eventually be read by MATLAB.
The output file contains the image number, the level number, and the sequence number
within each level for the data contained within the packet. A MATLAB routine sorts
through this file and breaks it into separate image files. These image files are further
sorted and missing pointers cause their corresponding data values to be zeroed out. Thus,
the end product is a database representing the data that was successfully transmitted and
zeros for the data that was lost in the transmission process. This database serves as the
input to the reconstruction routine.

The compression and decémpression routines make use of the following MATLAB

routines written by Carvahlo:

¢)) Compression:
decomp.m - the main. decomposition routine, calls the other routines
dwt2rDEC.m - the Quadrant Pyramidal 2D discrete wavelet transform used
to compute the wavelet sequence for transmission

2) Decompression:

recomp.m - the main recomposition routine, calls the other routines

49

res_scale_DEC.m - discards wavelet coefficients by comparing
their energies to a relative threshold based on the resolution desired
idwt2DEC.m - 2D inverse discrete wavelet transform, returns the

reconstructed image

Two MATLAB routines were written to interface these algorithms with the results
generated by the OPNET simulation. The first, create_mask.m, is the routine used to
create an image mask from the data supplied by OPNET. The second, which is
ernbedded in the function idwt2DEC.m, is used to apply the generated mask to the image
data.

The above decomposition routines generate sixteen blocks of data, each of which
is 16384 values long. These blocks are the result of bandpass filtering, and, therefore,
represent various frequency levels within the image. The number and size of the blocks
are a byproduct of the number and size of the filters used in the decomposition. Each
value is representable by eight bits. These sixteen blocks are grouped into five resolution
levels, based on energy content. Level one always contains the lowest frequency block
and serves as a foundation upon which the other levels can build. Each complete image
represents (16 x 16384 =) 262144 bytes to be transmitted. These are queued up and
transmitted, as explained earlier, and an output file of image, level, and sequence numbers

1s generated.
1. create_mask

The function create_mask.m reads this output file into MATLAB as a matrix
called "mask_data". The rows of this matrix represent the pointers correctly received by
the receiver and have three columns: image, level, and sequence number. This matrix
is then broken into separate files, named "image#_mask.mat", based on the image number.

The files are MATLAB workspaces that consist of a matrix, denoted "mask", that

50

represents the mask to be applied to generate that particular transmitted image. "Mask"
is a 16x16384 matrix of ones and zeros. Each row corresponds to a particular frequency
block. A one represents a data value that was successfully received, while a two
represents a data value that was lost. Create_mask.m calls a routine, eval_mask.m, to
evaluate each mask and return the number of values and packets lost in that particular
image. Create_mask uses this information to generate plots of the number of values and

packets lost per image for all the images transmitted in that session.
2. idwt2DEC.m modification

The resultant mask is applied to the image data during the recomposition
algorithm. Specifically, it is applied just prior to the image reconstruction in the function
idwt2DEC.m. The modified code requests the user to input the number of the particular
image to be generated and uses this to load the appropriate mask workspace file, of the
form "image#_mask.mat". This loads the "mask" applicable to this image into MATLAB.
The embedded code performs an element by element multiplication between the image
data and the received mask. As a result, data values corresponding to zeros in the mask
are erased. This multiplication is done on a block by block basis, with each row of the
mask matrix representing a block. A matrix containing the sorted energy levels of the
original blocks is used to ensure that the frequency blocks are masked according to their
order of transmission. In other words, it is crucial to know which blocks were transmitted
with which levels. The sixteen blocks resulting from this element by element
multiplication are subsequently used by the reconstruction algorithm to generate the

transmitted image.

51

52

VI. RESULTS

This chapter presents the analysis of representative results that can be produced
using the work presented in the previous chapters. The results provided permit both
quantitative and subjective evaluation of the effectiveness of real-time transmission across
the CDL using the proposed approach. Specifically, the simulation data shows the utility
of the proposed solution by providing plots of the various critical indicators in a network
environment. The MATLAB algorithms provide a visual display of the resultant images
transmitted through the network model, allowing the user to subjectively evaluate the
effectiveness of the solution.

The first section provides a broad overview of the simulations, including the
justification for the choice of indicators. The second section illustrates the success of the
transmission scheme without the presence of errors. The final section introduces jamming
to the simulation and demonstrates the success of the mechanism under high bit error

rates.
A. SIMULATION OVERVIEW

Two simulations are presented in this chapter. The first one demonstrates the
operation of the mechanism in the presence of overloaded network conditions, but no
imposed jamming. These results validate the ability of the mechanism to guarantee real-
time constraints. The second simulation imposes jamming on the link. The results
demonstrate the effectiveness of the mechanism to reproduce the minimum acceptable
image quality and still maintain the real-time constraints.

- Numerous performance metrics are evaluated to ensure the validity of the results.
The instantaneous delay for the received compressed video packets is recorded to ensure
that the real-time bounds on maximum and minimum end-to-end delay are not exceeded.

The sizes of the queues along the nodes establishing the real-time flow are examined to

53

verify the realistic nature of the solution. In addition, the size of the general application
queue at the CDL Manager is provided to verify that the network was subjected to an
overload condition. For completeness, the throughput as well as a record of the arrival
of the time of the various real-time packets are presented.

Three metrics are utilized to evaluate the received image. The first is a plot of
the number of packets lost per image for the real-time flow. The second is a quantitative
measure of the signal-to-noise ratio of the reconstructed image. Finally, the reconstructed
image itself is presented to allow a subjective evaluation of the transmission scheme.
Where applicable, a display of the missing components in the reconstructed image is also
provided. Figure 20 displays the original image as it is presented to the compressed video

application at the transmitting end of the connection.

Original Image

Figure 20. Original Image of an F-16

54

B. TRANSMISSION WITHOUT JAMMING

The first simulation demonstrates the operation of the real-time transmission
mechanism in the absence of jamming. The objective is to demonstrate that the
mechanism realistically maintains the real-time transmission constraints. The following

is a listing of the vital parameters of this simulation:

simulation duration: 1 second

sending application: station O on the airborne LAN (node 0)
receiving application: station O on the surface LAN (node 10)
image interarrival time: 0.1 seconds

image size: 262,144 values

2,097,152 bits
26,215 packets (100 values/packet)
desired transmission rate: ~ 22.021 Mbps

minimum acceptable rate: 1.3763 Mbps (represents only level one)

1. Queue Sizes

Figures 21 through 23 present the size of the queues located at the transmitting
station. Figure 21 is a plot of the size of the queue in the token bucket process. The
image arrival time of 0.1 seconds can clearly be seen in the plot. The initial massive
transmission that occurs with the arrival of each new image is caused by the tokens
accumulated during the idle time between the transmission of one image and the arrival
of the next image. After this burst, the image data gets sent at the rate corresponding to
the sloping portions of the curve in Figure 21. In Figure 22, the leaky bucket
transmission rate is only limited by the maximum rate supported by the FDDI ring, 100

Mbps. The transmission rate of the mac process (Figure 23) is limited by the availability

55

of the FDDI ring. Figure 24 is a plot of the real-time application subqueue assigned to
the flow at the CDL Manager. Together, these four queue plots demonstrate that the
queue requirements for the reserved resources along the real-time flow never exceed the

size of a single image.

Token Ducket Quene Sire (Packets) (x1000) Leakp Bucket Queve Size (Packets) (x1000)

Figure 21. Token Bucket Queue Size Figure 22. Leaky Bucket Queue Size

L MABAger Aealotine Apl. Guaue SLie (Fackete)

Figure 23. Mac Queue Size Figure 24. CDL Manager Real-time
Application Subqueue Size

The next figure, Figure 25, is a plot of the size of the general application subqueue
at the CDL Manager. The monotonic nature of this plot verifies the overloaded condition

of the CDL. The subqueue is backing up linearly over time with the arrival of excess

56

packets. In an actual implementation, this queue size would be limited and excess
packets would be discarded. It should be noted that this overloaded condition was
artificially imposed on the network by forcing the non-real-time stations to generate a

load that exceeded the CDL capacity used in the simulation.

DL Banager General Subgueut 3ize (Packets)

Figure 25. CDL Manager General Subqueue
Size - Illustrating Overload Condition

2. Image Data Transmission

The next three figures relate to the statistics gathered from the compressed video
receiver at the destination station. Figure 26 is a record of the image and sequence
numbers of the packets received by the process. It shows that eight complete resolution
(including all five levels) images were received. These are considered complete because
the images were received at the destination prior to the expiration of the simulation time.
The mean and instantaneous end-to-end delay values for the received packets are plotted
in Figure 27. The plots clearly illustrate the maximum and minimum bound on this
delay, validating the effectiveness of the proposed mechanism. The delay is at a
minimum value for the first packet received and rises to a maximum value for the final

packet received from an image. This is because the delay is measured from the time the

57

entire image arrives at the sender, which is the same for all packets within a given image.
The throughput is shown in Figure 28 for completeness. As expected, this average

throughput approaches the desired transmission rate of the sending application, 22.021
Mbps.

Figure 26. Image and Sequence Numbers of
Received Compressed Video Packets -

Figure 27. Instantaneous and Mean Delay Figure 28. Througl.xput for Received
Values for Received Compressed Video Compressed Video Packets
Packets

58

3. Received Image Quality

The final two figures present the reconstructed image and its performance metrics.
Figure 29 shows that the eight transmitted images (images O to 7) were received without
packet loss. This is not surprising because of the large link margin of the CDL when
jamming is not present. The ninth and final image (image 8) suffered packet loss due to
the termination of the simulation. Finally, the reconstructed image is displayed in Figure
30. As expected, the reconstructed image is identical to the transmitted image. The

signal-to-noise ratio of 48.83 dB is also included in the graphic.

800

] ~
3 8

g

Number of Packets Lost
w »
3 8
T

n
8

100+

0 . . " L L
-2 0 2 4 [8 10
Image Number

Figure 29. Number of Packets
Not Received at Destination

59

o

SR
S

= 48.83 dB,
ltered, Order 15

rthogonal Fi

10

B

th No Jamming

1
60

Overloaded Network w

Reconstructed image SNR

Received Image

Figure 30

100}
150}
200
250
300}
350}
400
450}
500

C. TRANSMISSION WITH JAMMING

The second simulation run is designed to validate the effectiveness of the real-time
mechanism in the presence of jamming. The parameters of concern for the second run

are:

simulation duration: 1 second

sending application: station O on the airborne LAN (node 0)
receiving application: station 0 on the surface LAN (node 10)
image interarrival time: 0.1 second

image size: 262,144 values

2,097,152 bits

26,215 packets (100 values/packet)
desired transmission rate: ~ 22.021 Mbps
minimum acceptable rate: 1.3763 Mbps (represents only level one)
probability of bit error

in jamming state: 107
1. Jamming

Figures 31 and 32 display the state of both the jamming and the CDL Managér's
forward error correction mechanism. Jamming is experienced by the CDL at 0.25 seconds
into the simulation and the CDL .Manager responds by initiating the forward error
correction mechanism just prior to 0.5 seconds. This lag is a result of the history and the
hysteresis built into the link monitoring mechanism. By adjusting these, the CDL
Manager's speed of response to the commencement of the jamming can be adjusted. The
combined plots show that from simulation startup to 0.25 seconds, no jamming is

experienced by the CDL. From 0.25 to 0.5 seconds jamming is present, but the CDL

61

Manager has not responded. After 0.5 seconds, the CDL Manager has initiated the

forward error correction mechanism.

CDL Manager Error Correction Mechanism

0.75

0.8

0.25 0.25

] 0.25 6.5 0.75 3 1.25 1.8 Q 0.25 0.5 0.75 1 1.28 1.5
time (sec)

time (sec)

Figure 32. Plot of the CDL Manager
Forward Error Correction Mechanism:
0 corresponds to OFF
1 corresponds to ON

Figure 31. Plot of Jamming:
0 corresponds to OFF
1 corresponds to ON

2. Queue Sizes

The next three figures are an indication of the queue requirements along the path
of the flow. Once again, the queue requirements at ariy resource never exceed the amount
of data contained in a single image. At the CDL Manager, this is achieved by adding the
overhead of the forward error correction just prior to transmission of the packet. The
token bucket queue (Figure 33) is seen not to completely empty with each transmission
once the forward error correction has been activated. This is because the bucket's average
transmission rate has been reduced to the minimum acceptable rate by the CDL Manager
corresponding to the transmission of resolution level one. In addition, the tokens no
longer have a period where they can accumulate in the token bucket. Thus, the token
bucket no longer experiences the bursts seen in the earlier case. This removes the
backlog caused by this burst at the queues in the leaky bucket, mac, and CDL Manager

processes. This can be clearly seen in Figures 34, 35, and 36, where the queues are

62

reduced to the size of a single packet because the rate out of the queue is greater than or

equal to the rate into the queue.

Token Bucket Gueue Size (Packets) (x1000)

Leaky Bucket Queue Size (Packets) (x1000)
2.5 in NN I\ AN

NN YNYNNYYNYY .25

1.5

o UL

. \ \ \ 0 0.25 0.5 0.75 i 1.25 1.5
°

time (sec)

0 0.25 0.5 0.75 1 1.25 1.5

time (sec)

Figure 33. Token Bucket Queue Size Figure 34. Leaky Bucket Queue Size
(Packets) (Packets)

€DL Manager Real-Time Appl. Queue Size (Packets)

Mac Queue Size (Packets)

Figure 35. Mac Queue Size (Packets) Figure 36. CDL Manager Real-time
Subqueue Size (Packets)

3. Image Data Transmission

The next set of three figures presents the statistics gathered from the received
compressed video packets. The first figure, Figure 37, plots the image and sequence

numbers of the received packets. Once the forward error correction mechanism is

63

activated and the sender's transmission rate is reduced, only level one packets are
received. The mean and instantaneous end-to-end delay values are plotted in Figure 38.
The instantaneous delay is bounded and it is this bound that is used by the receiver for
its playback point. It should be noted that the results from the previous section conform
to these maximum and minimum delay bounds. Thus, the real-time constraints on both
the end-to-end delay and jitter are satisfied. Finally, the average throughput is plotted in
Figure 39. As expected, this value approaches the minimum acceptable rate of 1.3763

Mbps corresponding to the transmission of only level one data.

© Received Compx. Video Image Number (x100000)
<O (null) (x100000)
O Received Compx. Video Sequence Number (x100000)

\
1
i
\

.5 0.75 1 1.2% 1.5
time (sec)

Figure 37. Plot of Image and Sequence
Number of Received Compressed Video
Packets (x10%

Received Compx. Video Throughput (x1e+07)

RN

© Received Compr. Video Instantaneous Delay

© Received Compr, Video Mean Delay

Figure 38. Mean and Instantaneous Figure 39. Compressed Video Throughput
Delay of Compressed Video Packets (x 107

(secs)

64

4. Received Image Quality

The final five figures present the reconstructed images with and without the
forward error correction mechanism in operation. Figure 40 displays the number of
packets lost per imége during the transmission session. The first image (image 0), prior
to the jamming, suffers no packet losses and corresponds to the example of the previous
section (Figure 29). The next three images (images 1, 2, 3) are exposed to jamming
prior to the activation of the error correction mechanism. From the fifth image onwards,
the mechanism is activated and the remaining images represent the correct transmission
of the complete set of level one packets for each of the images. It should be noted that
more packets of the original image are lost once the FEC mechanism is activated;

however, all level one packets are received correctly.

2500
2000+
3 _
= 1500 R
2
8
| o
K
o
-CE' 1000+
2
z
5001
0 . .) . . 2 .
-2 o 2 4 6 8 10 12 14
Image Number

Figure 40. Number of Packets
Not Received at Destination

65

Figures 41 and 42 display the reconstructed images received by the destination
application for images 2 and 6. Image 2 was subject to jamming, but did not make use
of the error correction mechanism. All five resolution levels continue to be sent with
packet losses occurring randomly throughout the transmission. The result is that packets
are lost from all frequency components within the spectrum. The dark black areas
correspond to lost packets that contained the low frequency components of the image.
These omissions make it difficult to analyze or identify the target. The next figure,
Figure 42, demonstrates the effectiveness of the communication mechanism. The
transmission rate of the sender is reduced and the CDL bandwidth is reallocated to allow
the addition of forward error correction to the transmission across the CDL. Thus, while
the transmission consists only of the low frequency components in the image, they all are
received correctly. This results in a complete and identifiable, although fuzzy, image at
the receiver. This is further confirmed by the last two figures, which display the
information that was contained in the packets that failed to arrive at the receiver. The
former case contains information throughout the entire spectrum, while the latter case
contains only the high frequency components. By trading volume for correctness, the
mechanism has sacrificed the "sharpness” of the high frequency components for the
content of the complete image. The signal-to-noise of the second image is much higher
than that of the first, thus quantitatively verifying the qualitative analysis. It is interesting
to note that image 2 suffers less packet loss than image 6, but produces an "inferior"
result. This underscores the difficulty in relying exclusively on the traditional

performance metrics.

66

Reconstructed image SNR = 5.874 dB
LRTETE f

50

100

150

200

2501

300

350+

4001

450+

500

0 100 200 300 400 500
Biorthogonal Filtered, Order 15

Figure 41. Received Image: Jamming
without Proposed Mechanism

Reconstructed image SNR = 26.92 dB

501

100+

150

2001

2501

300

350

400

4501

500

0 100 200 300 400 500
Biorthogonal Filtered, Order 15

Figure 42. Received Image Received: Jamming
with Proposed Mechanism

67

Figure 44. Errors in Received Image with Proposed Mechanism

68

VII. CONCLUDING REMARKS

A. CONCLUSIONS

In this thesis, we have presented and analyzed a mechanism to transmit real-time

compressed video data across a packet-switched network in the presence of highly

correlated errors. A model of the Common Data Link was completed in OPNET and

served as the simulation testbed for the proposed mechanism. Results were examined

quantitatively and qualitatively to verify the effectiveness of the mechanism.

The specific contributions of this thesis are as follows:

6y

)

3)

A successful real-time transmission scheme is presented and analyzed to
allow the Common Data Link to operate effectively and reliably in the
presence of jamming. The mechanism to enforce this transmission scheme
guarantees that (1) delay bounds are met for real-time flows despite
netwerk overload and (2) a minimum acceptable image quality is
maintained despite the presence of highly correlated errors. This
mechanism is composed of the following elements: (1) a hierarchical
image compression scheme, (2) rate control at the source, (3) bandwidth
allocation within all encountered network nodes, and (4) dynamic forward
error correction.

A complete and operational model of two FDDI LANSs interconnected by
the CDL is produced in OPNET. This model serves as an expandable test-
bed for further CDL development.

An interface between OPNET and MATLAB is designed and implemented
to allow the reconstruction and subjective evaluation of transmitted images
simulated in OPNET. Unique in the study of real-time transmission
schemes, this ability to view the images received during the simulation is

essential to the effective evaluation of the proposed mechanism.

69

-

A user's guide for the CDL network model in OPNET is produced. This
user's guide facilitates the effective and efficient use of the model for

follow-on research and development.

B. FOLLOW-ON WORK

The breadth and diversity of the material covered by this thesis leads to numerous

possibilities for follow-on research. Among these are:

(1)

@

€)

4)

©)

A comprehensive review of the current link monitoring mechanism. This
review would seek to improve the measurement of the bit error rate and
eliminate undesirable changes in the link status.

A close examination of the required error correction scheme leading to a
more realistic model of both the overhead and the delay associated with
the chosen scheme.

An implementation of the developed real-time transmission scheme over
a multi-hop CDL network.

An implementation of multiple LAN connections to a single CDL network
interface.

An implementation of alternate higher level protocols, specifically TCP/IP,

used to encapsulate real-time data over the CDL.

70

APPENDIX A. CDL MODEL USER'S GUIDE

This appendix is designed to serve as a guide to the effective and efficient use of
the Common Data Link simulation model in OPNET. It is broken into four sections:
standard model operation, the model interfaces, the model output options, and model
modifications. A thorough understanding of this appendix is essential to the productive
utilization of the CDL simulation.

The best way to approach this appendix is to use Section B as a guidebook in
setting up the simulation to generate the specific environment to be analyzed. Section C
is used in conjunction with Section B to specifically recognize the attributes that are of
importance in a particular scenario and to provide guidelines in choosing the appropriate
values. The desired outputs can be generated as given in Section D. Section E is
applicable when changes to the basic architecture of the existing model are attempted.

This appendix assumes a working knowledge base for both OPNET and
MATLAB. In addition to the OPNET Manuals, Nix's thesis [Ref. 20] provides an
excellent tutorial for those unfamiliar with OPNET. A similar tutorial section is available
in the basic MATLAB manual.

Upon completion of this thesis, the working CDL model will be compressed and
stored on the Naval Postgraduate School's Electrical and Computer Engineering network
and will be made available for follow-on development upon request. Inquiries should be
directed to the author (walker@ece.nps.navy.mil) or Shridhar Shukla

(shukla@ece.nps.navy.mil).
A. SYSTEM REQUIREMENTS

Two licensed simulation operating énvironments are required to fully utilize the
CDL model. The first is MIL 3, Inc.'s Optimized Network Engineering Tool (version
2.4 or later) and the second is the MathWork's MATLAB (version 4.0 or later). Together,

71

these software packages determine the system requirements for running the CDL model.
In addition, it is recommended that, at a minimum, 50 Mbytes be reserved on the hard
drive to facilitate the storage of the large temporary files generated by OPNET during
simulation. The simulations reported here were run on a Sun Sparcstation 5 running

Sun0S4.1.3.

B. CDL MODEL OPERATION

To configure the CDL model simulation, there are four areas that need to be
addressed: (1) application parameters, (2) network parameters, (3) CDL Manager
parameters, and (4) link parameters. This section discusses these areas and provides
guidance in setting the appropriate parameters. In addition, the simulation execution is
presented in detail. Parameters that need not be altered are not discussed. These include
the network and link attributes which need not be changed unless the user desires to

change the underlying model.
1. Applications

The application and its token-leaky bucket interface to the FDDI ring must be set
up to model the desired application performance. The major factors are the frequency of
image generation and the average image size in bits. In addition, the minimum and
desired level of image resolution should be implemented. The frequency of image
generation is determined by the "src.interarrival args” attribute. This should be set to the
interval between image arrivals in seconds. The average image size is used to set the
appropriate data rates and data packet and token sizes. The data packet size reflects the
size of the information field and is most efficient if it is an integral number of bytes.
Each byte is used to represent a single value of the compression output data. The

"tkn_bkt.data segment size” should be set to the desired number of bits in the information

72

field. The "tkn_bkt.desired rate" and "thn_bkt.min_acceptable_rate” should be calculated
based on the amount of data required to produce the desired image resolution and the
minimum acceptable image resolution, respectively. These are set according to the

following equation:

number of values for resolution

* (s t size + header si
number of values per packet) * (segment size + header size) 3)

rate =

image update interval

The segment size and header are both in bits and the update interval is in seconds. The
header size is 40 bits, while the segment size is the value chosen for "tkn_bkt.data
segment size". The number of values for the applicable resolution can be determined by
multiplying the number of values per level by the number of resolutions levels desired.
The "token_size" for both the token and leaky buckets should be set to a value greater
than or equal to the segment size plus the header size. To guarantee that the FDDI ring
will support the application, the "mac.sync bandwidth” should be set to a value greater

than or equal to the bandwidth determined by the following equation:

"desired rate” (si 80)
* (Segment size +
(segment size -+ 40) am z 4)

10°

bandwidth =

This equation sets the application's synchronous allotment based on the desired data rate,
taking into account the overhead of both the compressed video packet and the FDDI
packet. The destination address needs to be set and must be another real-time FDDI
station. Finally, the "cmpr_vdo_rcvr.Data_file" attribute should be set to the name of the
output file to record the arrival of compressed video packets at this station.

To simulate the additional load of general traffic on the Common Data Link,
multiple non-real-time FDDI stations can be setup on the attached FDDI rings. The

stations generate traffic based on a random message generation routine. A station is set

73

up by specifying the parameters for this message generation routine. The packet
generation is based on an exponential pdf with a mean data rate set by the attribute
“llc_src.arrival rate”. The packet lengths are also set by an exponential pdf with a mean
packet length determined by "llc_src.mean pk iength ". The range of valid destination
addresses is specified by setting the attributes "llc_src.low dest address” and

"llc_src.high dest address”. The percentage of synchronous and asynchronous packet
generation is determined by the "llc_src.async_mix". Finally, the range of the FDDI
packet priorities is determined by the attributes "llc_src.low pkt priority” and "llc_src.high

pkt priority".
2. CDL Manager

The CDL Manager must be tailored to the individual simulation to achieve the
desired operation. The major components are the link monitoring attributes and the
forward error correction attributes. The link monitoring must be set up for both ends of
the data link. The monitoring packets are generated based on the attributes "CDL
Manager.link_monitoring_trans_rate" and "CDL Manager. monitoring pkt size”. In
addition, the transmission criteria and hysteresis -plot must be defined for the link
monitoring reports. The "CDL Manager.LOR transmission delta” is used to set the
change in monitoring ratio (bad packets/total packets) that will trigger the transmission
of a link quality report. The "CDL Manager.history length" sets the length of the link
monitoring history to be maintained by the CDL Manager. This history is the record of
good and bad link monitoring packets received by this CDL Manager. The link
monitoring hysteresis plot is defined by the attributes "CDL Manager.lower hysteresis
threshold” and "CDL Manager.upper hysteresis threshold", which are the thresholds for
the GOOD and BAD link status determined as ratios of the number of bad packets in the

history divided by the number of packets in the history length, respectively.

74

3. Jamming

The jamming must be set up as is appropriate for the desired simulation. The bit
error rates for the states of jamming and no jamming are set by the attributes
"Is_#.jam_ber" and "ls_#.no_jam_ber", respectively. The probability that jamming is
initiated and suspended is determined by the “Is_# Jam_trans” and "Is_#.no_jam_trans"
attributes. It is important to note that these attributes must be set for each channel

modeled in the CDL link.
4. Simulation Execution
The CDL model simulation is executed through the use of the OPNET simulation

tool. Figure 45 presents the simulation tool configuration file, cdl, used in conjunction

with the CDL model.

Simulation |[Probe File r;utc: File Scalar File Seed Duration Vpd Intvl |[Arg Rame Rrg Value

edl edl cdl cdl 1.0 0.1 environment file cdl

Figure 45. Simulation Tool Configuration File for the CDL Model

The simulation file created by the CDL model is cdl.sim and is entered in the first
block. There are two probe files available with the CDL model. The first, cdl_basic.pb,
probes almost all of the output statistics produced by the CDL model. This file is used
as a template to create the actual probe files used in the simulations. The probe file
referred to in Figure 45, cdl.pb, is a subset of cdl_basic.pb. The vector and scalar files

are used to gather the output statistics generated by the simulation. The environmental

75

file used in the simulations is cdl.ef, as presented in Section C. It should be noted that
the debugging feature is turned on within cdl.ef and, thus, the command cont must be
entered on the command line to run the simulation. For more details on the debugging
facility, refer to the OPNET Manual.

As shown in Figure 45, the CDL simulation provides updates every 0.1 seconds.
(This is adjustable.) Upon simulation termination, the results can be observed through

use of the OPNET Analysis Tool on the output file cdl.ov.

C. CDL MODEL INTERFACES

This section provides a detailed list outlining the parameters that are used as inputs
to the CDL model. These parameters are normally recorded in the environment file, of
the format "*.ef". A sample of the environment file used in these simulations can be
found at the end of this section. The best approach to setting up a specific simulation is
to use this list as g reference, in conjunction with the steps outlined in the previous
section, to determine what parameters must be altered. The user is encouraged to make
use of the sample environmental file as a template, making only the changes necessary

for the specific simulation.

1. Listing of Simulation Attributes

The following list furnishes the attribute along with a brief description of its
meaning and its effect on the model. The standard form for these attributes is:
[net].[subnet].[node].[module].[process].[attribute]. For our simulation the net is "top" and
the subnet is either "ring0" (the collection platform) or "ringl" (the surface platform).
The node is f[node #], ie.."f0" for node 0. Thus, "top.ring0.f5.mac.station_address” would
correspond to the station_address, an attribute of the mac process, for the 5% station on

ring0. In the environment file, an asterisk is placed at a position that applies to all

76

particular values for that position in the model. For example, an "*" in the second

position would force this parameter value to be applied to both ring0 and ringl. The list
contains only the fields in the attribute name that are specific to that particular attribute.
In the environmental file, quotes are used to enclose attributes whose names contain
spaces. These quotes are dropped for convenience in the following list. Finally, the data
type for the attribute is included in parenthesis following the attribute name. The

following abbreviations are used: floating point (fp) and integer (int).

General Model Attributes:

€8] station address (int) - address of the particular station

2) mac.ring_id (int) - This identifies the subnet this station belongs to

3) llc_src.CDL_NI_addr (int) - This is set to the station address of the local
CDL_NI

FDDI Ring Constants:
(D spawn station (int) - address of station designated to spawn the FDDI token
2) station_latency (fp) - delay encountered at each station along the ring (seconds)

3) prop_delay (fp) - delay encountered between stations (seconds)

General Station Attributes (Both real-time and non-real-time):
€Y mac.sync bandwidth (fp) - fraction of total synchronous bandwidth that is
guaranteed to this station

(2) mac.T_Req (fp) - token rotation time requested by this station (seconds)

Real-time Compressed Video Attributes:

¢)) src.interarrival pdf (type) - type of probability distribution function for image

generation

2 src.interarrival args (type) - average interval between image generations (secs)

77

3

4

©)

(6)

tkn_bkt. data segment size (int) - size of information field in each cmpr_vdo_pkt
(bits) This is used to calculate number of image decomposition values per packet
= (segment size)/8

tkn_bkt. desired rate (int) - desired data transmission rate for compressed video
application (bps). This is set to permit the transmission of the entire image
between image arrivals:

rate = ((image size)/(values per pkt)) * (sgmnt size + header size)/(image intvl)
The header size used in this equation is 40.

tkn_bkt.min_acceptable_rate (int) - minimum acceptable data transmission rate
(bps). This is set for transmission of level one data only (desired rate/1 6)
cmpr_vdo_rcvr.Data_file - name of file to store list of received compressed video
packets. This file provides the data to MATLAB. Its name must be of the form

* data.

Real-time Station Attributes:

(D

)

3

4

)

(6
)

tkn_bkt. token_size (int) - size of token bucket tokens (bits). This should be set
to maximum packet size = data_sgmt_size + header (The size of the header is 40
bits)

tkn_bkt. bucket_size (int) - maximum size of token bucket (bits)

tkn_bkt. send_rate (int) - transmission time for packets departing the token bucket
(bps)

thkn_bkt. max_queue_size (int) - maximum size of token bucket transmission queue
(bits). This needs to be bigger than maximum size of image data.

lky_bkt. token_size (int) - size of leaky bucket tokens (bits)

should be set to maximum packet size = data_sgmt_size + header (40 bits)
lky_bkt. bucket_size (int) - maximum size of token bucket (bits)

lky_bkt. send_rate (int) - transmission time for packets departing the leaky bucket
(bps)

78

®)

lky_bkt. max_gueue_size (int) - maximum size of queue (bits). This needs to be

bigger than maximum size of image data

Non-Real-time Station Parameters:

(M
2)
3)
“4)
®
(6
(D

llc_src.low dest address (int) - smallest address for this station to send to
llc_src.high dest address (int) - largest address for this station to send to
lic_src.high pkt priority (int) - maximum FDDI packet priority for this station
llc_src.low pkt priority (int) - minimum FDDI packet priority for this station
lic_src.arrival rate (int) - average FDDI packet generation rate for this station
lic_src.mean pk length (int) - average FDDI packet length for this station
lic_src.async_mix (fp) - asynchronous/synchronous mix for FDDI packet

generation at this station (1.0 = all asynchronous traffic)

CDL Manager Attributes:

¢y

)

3

CDL Manager.load balancing algorithm (int) - load balancing algorithm

(0 = circular, 1 = empty allocation)

CDL Manager.FEC_level (fp) - Bit Error Rate threshold (errors/bit) the imposed
FEC will protect under (ie. the packet in question will be accepted if it has less
than this ratio of errors Iﬁer bit)

CDL Manager.FEC_overhead (fp) - Overhead to be applied to packets when FEC

is applied to them (expressed in terms of a ratio to multiply packet size by)

Link Monitoring Attributes:

ey

2

CDL Manager.link_monitor_trans_rate (fp) - rate to transmit link monitoring
packets (seconds/packet) from this CDL Manager
CDL Manager.monitoring pkt size (int) - size of link monitoring packets

transmitted from this CDL Manager

79

3

@
)
(6)

CDL Manager.LQR transmission delta (fp) - change in ratio (bad packets/total
packets) to trigger transmission of LQR

CDL Manager.upper hysteresis threshold (fp) - ratio to trigger link status BAD
CDL Manager.lower hysteresis threshold (fp) - ratio to trigger link status GOOD
CDL Manager.history length (int) - size of link monitoring history (number of

packets)

Jamming Attributes:

(D
)
©)
C))

Is_#.jam_ber (fp) - Bit Error Rate when jamming is present on channel #
Is_#.no_jam_ber (fp) - Bit Error Rate when jamming is not present on channel #
Is_#.jam_trans (fp) - probability that jamming will commence for channe] #

Is_#.no_jam_trans (fp) - probability that jamming will stop for channel #

Note: Despite the separate channel designations, once commenced, jamming is applied

to all channels simultaneously. Upon suspension, jamming is stopped in all channels

simultaneously.

CDL Attributes:

(D
)
3

Is_#.delay (fp) - delay encountered in channel #
pt_#[0].data rate (int) - data rate for channel #
ecc threshold (fp) - threshold to be used for packet acceptance (errors/bit)

2. Environmental file: cdl.ef

The following is the version of the environmental file utilized to generate the

results of the second simulation in the body of this thesis. It is provided as a template

for the model user.

80

BHEFERFR R AR RS HR AR H S H R BB HE RS R E R R R RS S8

#
cdl.ef - Envirommental File for CDL Model
#

#
BHHFREH RN R R R R R R R R R R RS RS

Last Modified: 8 June 1995
By: T. Owens Walker IIT

Simulation Set-up:

Set-up to run a real-time flow between f0 on ring0
and f0 on fingl in the presence of jamming

= 3k ke S 3 3k Ak 3k a9k 3k

sample simulation configuration file for

two interconnected 10 station network in the

existence of pulsed jammer interference (137.088 Mbps channel
hierarchy)

with circular allocation load balancing algorithm

Includes real-time flow establishment between
f0 on ring0 and £0 on ringl

FHEFHBEEH IR HSE SRS SR B BB RS S
#
General Model Attributes
#
HEHEFHHERHFHFHSH SRS SRS BEBIFHH

station addresses

* . ring0.£f0.mac.station_address: 0

*.ring0.fl.mac.station_address: 1

*.ring0.£f2.mac.station_address: 2

*.ring0.f3.mac.station_address: 3

*.ring0.f4 .mac.station_address: 4

*.ring0.f5.mac.station_address: 5

* .ring0.f6.mac.station_address: 6

*.ring0.f7.mac.station_address: 7

*.ring0.f8 .mac.station_address: 8

*.ring0.f9.mac.station_address: 9

*.ringl.f0.mac.station_address: 10
*.ringl.fl.mac.station_address: 11
*.ringl.f2.mac.station_address: 12
*.ringl.f3.mac.station_address: 13
*.ringl.f4.mac.station_address: 14
*.ringl.f5.mac.station_address: 15

*.ringl.f6.mac.station_address: 16
*.ringl.f7.mac.station_address: 17
* ringl.f8.mac.station_address: 18
* . ringl.f9 .mac.station_address: 19

.ring0. .mac.ring_id : 0
.ringl. .mac.ring_id 1
.ring0..1lc_src.CDL_NI_addr : 9
.ringl..llc_src.CDL_NI_addr : 19

BREAHHERR AR SAE R R LS R FHFEI RS RS RS S

#
Non-Real-Time Station Attributes
#

#
BREHFEHRRH S SR AR EH R RS S H RS S 4

Specific stations may be tailored by specifying the full name:
for example, top.ring0.f19.1lc_src.async_mix : .5

This means all stations must be specified, or individuals

may be named after the generic is specified.

destination addresses for random message generation

#"*.*.1llc_src.low dest address" : 9
#"*.* 1lc_src.high dest address" : 9
#"top.ring0.f0.1lc_src.low dest address”
#"top.ring0.£0.11lc_src.high dest address"

"*.ring0.*.1lc_src.low dest address": 10
"* ring0.*.llc_src.high dest address": 19
"*.ringl.*.1llc_src.low dest address": 0
"*.ringl.*.llc_src.high dest address": 19

range of priority values that can be assigned to packets; FDDI

standards allow for 8 priorities of asynchronous traffic. MIL3's

original model is modified to allow each station to generate multiple
priorities, within a specified range.

"*.* llc_src.high pkt priority" : 7
"*.* 1llc_src.low pkt priority" : 0

arrival rate(frames/sec), and message size (bits) for random message
generation at each station on the ring.

#"*.* * arrival rate" : 0
#"*.*_ * mean pk length" : 20000
"top.ring0.*.*.arrival rate": 0
"top.ring0.*.* . mean pk length": 1000
"top.ringl.*.*_ arrival rate": 0
~"top.ringl.*.* .mean pk length": 10
#"ringl.f9.*.arrival rate": 0
#"ringl.f9.* .mean pk length": ' 0

82

HEHHFR AR A S S HEBEH RS RS H S S S

#
Link Monitoring Attributes
#

HHASHHHHHHH R RS LS R EH B F RS SRR R

determinevrate at which link monitoring packets will be sent
(secs/pkt)
and size of pkt (bits)

"top.ring0.£9.CDL Manager.link_monitor_trans_rate": .01
#"top.ring0.£9.CDL Manager.link monitor_trans_rate": 100
"top.ring0.f9.CDL Manager.monitoring pkt size": 10000
"top.ringl.f9.CDL Manager.link_monitor_trans rate": 100
"top.ringl.f£9.CDL Manager.monitoring pkt size": 10000

attributes related to link monitoring and ILOR's

LOR transmission delta - the change in the ratio of

(bad packets/total pkts in history) when an LOR will be
transmitted

ex: .1 means that an LOR will be sent when the ratio changes by 10%
hysteresis thresholds determine when to declare a change in the link
status

these also are based on the ratio of bad packets/total pkts in
history

history length is the size of the linked list which holds the number
of errors

in the last x monitoring packets

"¥ % £9.* LOR transmission delta":

* . £9.* . upper hysteresis threshold":
"* % . f9.*% lower hysteresis threshold":
"* % f9.* history length":
"top.ringl.f9.*.ecc threshold":

"o

[«3 SleNoNel
o ™ 00O

FREFHF SRS HEHEF R BB RS
#

FDDI Ring Attributes
#
FREHSEHFFHEFFHSESSEF SRS SH

total offered load is the sum of all stations' loads (Mbps) .
Compute this by hand; this value is useful for generating
scalar plots where offered load is the abscissa.

total_offered_load_o0 : 0.18
asynch_offered_load_0 : 0.162
total_offered load_1 : 0.18
asynch_offered_load_ 1 : . 0.162

set the proportion of asynchronous traffic
a value of 1.0 indicates all asynchronous traffic

"k.*_* _async_mix" : 0.5

83

#"top.ring0.£9.11lc_src.async_mix" : 1
"top.ring0.£0.1lc_src.async_mix" : 0.0

$*** Ring configuration attributes used by "fddi_mac" **=*

allocate percentage of synchronous bandwidth to each station

this value should not exceed 1 for all stations combined; OPNET does
not

enforce this; 01FEB94: this must be less than 1; see equation below

To determine corresponding data rate:

Max Data Rate for Station = (sync bandwidth) * 100Mbps
"* . * mac.sync bandwidth" : 0.08955675
#"top.ring0.£f9.mac.sync bandwidth" : 0.0
#"top.ring0.* . mac.sync bandwidth" 0.01
#"top.ringl.*.mac.sync bandwidth"” 0.01
#"top.ring0.£0.mac.sync bandwidth" : 0.8

#"top.ringl. f9.mac.sync bandwidth": 0.8

Target Token Rotation Time (one half of maximum synchronous response
time)

SUM(SAi) + D_Max + F_Max + Token_Time <= TTRT

Powers gives TTRT = 10 ms as necessary for voice transmission; in
"BONeS",

D_Max + F_Max + Token_Time = 1.97888 ms.

"* . * mac.T_Reqg" : .01

Index of the station which initially launches the token

This index should be greater than the maximum station number

Bridge stations spawns token for interconnected simulation by default.

"spawn station": 20

FHEFHEFHEEF S E SRS

#
CDL Attributes
#

FHEHSHFEE SRR H SR E S SRR

Delay incurred by packets as they traverse a station's ring interface
see Powers, p. 351 for a discussion of this (Powers gives lusec,
but 60.0e-08 agrees with Dykeman & Bux)

station_latency: 60.0e-08
Propagation Delay separating stations on the ring.
If propagation delay is 5.085 microsec/km, this corresponds to

to a 50 station ring with a circumference of 50 km.
(The value given for propagation delay corresponds to Powers, and to

84

Dykeman & Bux)

prop_delay: 5.085e-06
Jamming Attributes
*.1ls_0.jam_ber: le-3
*.1ls_1.jam ber: le-3
*_.1ls_2.jam_ber: le-3
*.1s_3.jam_ber: le-3
*.1ls_4.jam_ber: 0.0
*.1s_0.no_jam_ber: le-12
*.1ls_1.no_jam_ber: le-12
*.1s_2.no_jam_ber: le-12
*.1ls_3.no_jam_ber: le-12
*.1s_4.no_jam_ber: 0.0
*.1ls_0.jam_trans: 0.0001
*.1ls_l.jam_trans: 0.0001
*.1s_2.jam_trans: 0.0001
*.1ls_3.jam _trans: 0.0001
*.1ls_4.jam _trans: 0.0001
*.1s_0.no_jam trans: 0.0001
*.1s_1.no_jam_trans: 0.0001
*.1s_2.no_jam_trans: 0.0001
*_ 1s_3.no_jam_trans: 0.0001
*.1ls_4.no_jam_trans: 0.0001
Return and command link propagation delays are specified as 60 msec.
*.1s_0.delay: 0.06
*.1s_1l.delay: 0.06
*.1s_2.delay: 0.06
*.1ls_3.delay: 0.06
*.1s_4 .delay: 0.06
CDL Channel Rates
"top.ring0.£9.pt_1[0].data rate": 8568000
"top.ring0.£f9.pt_2[0].data rate": 42840000
"top.ring0.£f9.pt_3[0].data rate": 42840000
"top.ring0.£9.pt_4[0].data rate": 42840000
"top.ringl.£f9.pxr_1[0].data rate": 8568000
"top.ringl.f9.pr_2[0].data rate": 42840000
"top.ringl.f9.pr_3[0] .data rate": 42840000
"top.ringl.f9.pr_4(0].data rate": 42840000
"top.ringl.f9.pt_1[0].data rate": 10240000
determine which load balancing algorithm is in use in the
local bridge station (linking node).
User should specify the algorithm before simulation.

0 (zero) =----> circular load balancing algorithm (default)

1 (one) --=--> empty allocation algorithm

B o

85

"top.ring0.f9.CDL Manager.load balancing algorithm": 1
"top.ringl.f9.CDL Manager.load balancing algorithm”: 1

determine the station address of the bridge node in
both rings.

“top.ring0.f9.*.station_address": 9
"top.ringl.f9.*.station_address": 19

FHEHHFHFHHAH IR E RSB SRR A EEH S B4

#
Simulation Attributes
#

BHEEEEEE R S A S R R

Token Acceleration Mechanism enabling flag.

It is reccomended that this mechanism be enabled for most situations
16APR94 : for bridged fddi_cdl_interconnection network this flag

must be zero. Otherwise, program fault occurs.

error documented on MIL3 bbs - Tke

accelerate_token: 0

Run control attributes

seed: 10

#duration: 10
verbose_sim: TRUE
#upd_int: 0.1

#os_file: cdl_basic_tow

Opnet Debugger (odb) enabling attribute
debug: . TRUE

FHERHHHFEFRHHF A SR H B A SRS E RS H SRS

#
Real-Time Station Attributes
#

FEERHEHEE SRR S SRR S

To set cmpr_vdo_fr packet rate:

Packet size = Data Segment Size + 40 bits of header
Set token sizes to Packet Size

Set token rates to desired packet rate

Bucket Rate = token_rate * token_size

ring0.f0 parameters

"top.ring0.f0.11lc_src.dest addreés": 10

86

"top.
"top.

n tOp

"top.

"top.
"top.
"top.
"top.
"top.
"top.
"top.
"top.
"top.

n tOp

"top.
"top.
"top.

" tOp

"top.

"top.

.ringo0.
ring0.
ring0.
ring0.
.ring0.
ring0.

ringl.fo0

" top

"top.
"top.
"top.

" top

"top.
"top.
"top.

" top

"top.
"top.
"top.
"top.
"top.

"top.
"top.

" tOp

"top.
"top.
"top.

" tOp

.ringl.

.ringl.

ring0.f1

"top.ring0.

ring0.
ringoO.
.ring0.
ringo0.

ringO.
ring0.
ring0.
ring0.
ring0.
ring0.
ring0.
ringoO.
ring0.

ring0.

ringl.
ringl.
ringl.
.ringl.

ringl.
ringl.
ringl.
.ringl.
ringl.
ringl.
ringl.
ringl.
ringl.

ringl.
ringl.
.ringl.
ringl.
ringl.
ringl.

f0.src.interarrival pdf":
f0.src.interarrival args":
f0.src.pk size pdf":
f0.src.pk size args":

f0.tkn_bkt.token _rate":
f0.tkn_bkt.token size":
£0.tkn_bkt.bucket_size":
f0.tkn_bkt.send_rate":
£0.tkn_bkt.max_queue_size":
£0.tkn_bkt.data segment size":
f0.tkn_bkt.max_pk_size":
£0.tkn_bkt.desired_rate”:

£0.tkn_bkt.min_acceptable rate":

f0.1ky_bkt.token_rate":
£0.1lky bkt.token size":
£0.1lky_bkt.bucket_size":
£0.1ky bkt.send_rate":
£0.1lky_bkt.max_queue_size":
£0.1lky_bkt.max pk_size":

f0.cmpr_vdo_rcvr.Data_file":

parameters

£f0.11lc_src.dest address™:

fO.sre.interarrival pdf":
f0.src.interarrival args":
fO.src.pk size pdf":
fO0.src.pk size args":

£0.tkn_bkt.token_rate":
£0.tkn_bkt.token_size":
£0.tkn_bkt.bucket_size":
£0.tkn_bkt.send_rate":
£0.tkn_bkt.max_queue_size":
£0.tkn_bkt.data segment size":
£0.tkn_bkt.max_pk_size":
£0.tkn_bkt.desired_rate":

f0.tkn_bkt.min_acceptable_rate’:

£0.1lky_bkt.token_rate":
£f0.1lky bkt.token_size":
£0.1ky_bkt.bucket_size":
f£0.1lky_bkt.send_rate":
£0.1lky bkt.max_queue_size":
£0.1ky_bkt.max_pk_size":

£f0.cmpr_vdo_rcvr.Data_file":

parameters

£f1.1lc_src.dest address”:

87

constant
0.1
constant
1024

0

100
1000000
1000000
100000000
800

10000
22021000
1376300

10000

840
1000000
1000000
100000000
10000

ring0_f0.data

1

constant
100
constant
1024

0

100
1000000
1000000
100000000
60

10000

0

0

0

100
1000000
1000000
100000000
10000

ringl_f0.data

"top.ring0.fl.src.interarrival pdf":
"top.ring0.fl.src.interarrival args":
"top.ring0.fl.src.pk size pdf":
"top.ring0.fl.src.pk size args":

"top.ring0.fl.tkn_bkt.token_rate":
"top.ring0.fl.tkn_bkt.token_size":
"top.ring0.fl.tkn_bkt.bucket_size":
"top.ring0.fl.tkn_bkt.send_rate":
"top.ring0.fl.tkn_bkt.max_queue_size":

"top.ring0.fl.tkn_bkt.data segment size":

"top.ring0.fl.tkn_bkt.max_pk_size":
"top.ring0.fl.tkn_bkt.desired rate":

"top.ring0.fl.tkn_bkt.min_acceptable_rate":

"top.ring0.fl.lky_bkt.token_ rate":
"top.ring0.fl.1lky bkt.token_size":
"top.ring0.£fl.lky bkt.bucket size":
"top.ring0.fl.lky_bkt.send rate":
"top.ring0.fl.lky_bkt.max_queue_size":
"top.ring0.fl.lky_bkt.max_pk_size":

"top.ring0.£fl.cmpr_vdo_rcvr.Data_file":

FREHFFHSH AR B H BB S SRS B RS S SRS

#
CDL Manager Attributes
#

FRRRAFFEHHHEE SRR A H RS

Forward Error Correction

"top.ring0.£f9.CDL Manager.FEC_level":

"top.ring0.f9.CDL Manager.FEC_overhead":

"top.ringl.£f9.CDL Manager .FEC_level":

"top.ringl.f9.CDL Manager.FEC_overhead" :

D. CDL MODEL OUTPUT

constant
100
constant
1024

0

100

1000000
100000000000000
100000000

60

10000

0

0

0

100

1000000
100000000000000
100000000

10000

ring0_f1.data

= o
(6238 V]

=
[eoNe)

The CDL model is capable of generating a variety of outputs designed to evaluate

the performance of the simulation under a myriad of different criteria. This section

describes the outputs available within the model and describes how to access them. It is

divided into the three logical forms of output generated by the simulation: (1) statistical

(or traditional) data, (2) transmitted image reconstruction, and (3) output designed to assist

in debugging simulations.

88

This section assumes a basic knowledge of the forms of output provided by
OPNET as well as a general knowledge of the debugging facility available within the
simulation environment. Once again, the reader is directed to the OPNET Manuals, if

required.

1. Statistical Output

The statistical information provided by the CDL model falls into two major
groups: the resource usage statistics and the transmission statistics. Resource statistics
are utilized to determine system requirements and the feasibility of implementation.
Transmission statistics tend to relate directly to the transmitted packets rather than the
system resources.

The resource statistics are gathered through existing OPNET output variables
associated with the different processes. The most common ones utilized within the CDL
model are those associated with the multiple buffers throughout the system. The output
statistics for these queues include the queue size, availability, and delay times experienced
by packets passing through the queue. These can be accessed by attaching a probe to the
desired statistic within the appropriate module. More information about these standard
OPNET output statistics can be found in the OPNET Manual.

The statistics that are gathered to describe the transmission through the CDL
model are, for the most part, specific to the CDL model. These user-defined output
variables, known as OUTSTATS, are assigned within the process modules and are
accessed using the probe facility in a manner identical to that for accessing OPNET's
standard output statistics. A descriptive list of the CDL model specific statistics, grouped
by process, follows. The list provides the number of the OUTSTAT followed by a brief
description. For example, to gather statistics to display the instantaneous throughput into

the token bucket, the user would assign a probe to OUTSTAT O of the tl_bkt_tow process.

89

Token Bucket (1I_bkt_tow):

0

A~ N

instantaneous throughput into token bucket
instantaneous throughput out of token bucket
average throughput into token bucket
average throughput out of token bucket

number of packets dropped by the token bucket

Leaky Bucket (zI_bkz_std):

0

[y

~N A LW

instantaneous throughput into leaky bucket

instantaneous throughput out of leaky bucket

average throughput into leaky bucket

average throughput out of leaky bucket

number of packets dropped by the leaky bucket

cumulative delay experienced by a packet upon arrival to leaky bucket
cumulative delay experienced by a packet upon processing by leaky bucket

cuulative delay experienced by a packet upon departure from leaky bucket

Real-time LL.C Source (fddi_sender):

0

cumulative delay experienced by a packet upon arrival to lic source

Real-time LLC Sink (fddi_rcvr):

0

creation time of packets received at lic sink

Compressed Video Receiver (cmpr_vdo_rcvr):

0
1
2

image numbers of packets received at compressed video receiver
level numbers of packets received at compressed video receiver
sequence numbers of packets received at compressed video receiver

creation time of packets received at compressed video receiver

90

instantaneous end-to-end delay of packets received at compressed video receiver
mean end-to-end delay of packets received at compressed video receiver

average throughput of packets received at compressed video receiver

~N N W A

total number of packets received at compressed video receiver

CDL Manager (CDL_manager):
0 ratio of bad packets in the history to history length currently maintained in link
monitoring history

1 current link status (0 = GOOD, 1 = BAD)

In addition to the statistics listed above, there are a number of user-defined global
output statistics specific to the CDL model. These are automatically generated (without
the need of probes) and are available in the analysis tool of OPNET. They are referenced
by name and are not associated with a particular process.

Jamming state of jamming (0 = OFF, 1 = ON)

Error Ratio per Packet errors per bit of current packet (in CDL pipe)
2. Image Generation

This CDL simulation set-up differs from many of the existing set-ups utilized in
the study of real-time transmission schemes in that a facility to reconstruct the transmitted
image has been provided. This is achieved by a set of MATLAB programs that interface
the OPNET model output data files with the MATLAB reconstruction routines. This
section describes the procedure to produce the received image.

The CDL simulation produces an output data file for each individual compressed
video receiver. The name of this file is assigned in the environment file (see Section B).
This file is used as an input to the MATLAB routine create_mask:

create_mask(filename', number of images)

91

The filename must be in quotes and does not include the suffix ".data". The number of
images is the number of images transmitted during the session and can be determined by
examining the image number of the last few entries in the data file. Create_mask creates
a series of MATLAB workspaces associated with the transmission session. There is one
workspace per transmitted image, each containing a variable, "mask," used to reconstruct
that image. The workspace files are named image#_mask.mat and are used by the routine
recomp. Create_mask calls a routine eval_mask to produce plots of the number of
packets and values lost per image in the transmission session. These can be saved using
the MATLAB command print.

Recomp is called without arguments and prompts the user for the following

information:

(1) filename to be reconstructed - This is the name of the original image file
to be used by the routine. The original image used in the body of the
thesis is 'airplane’. The entry should be in single quotes and contain no
extensions.

(2) image number to be generated - This is the number of the transmitted
image to be reconstructed and is mapped to the appropriate workspace file.

This file produces three images. The first is the original image transmitted by the sender.
the second is the received image and includes the received signal-to-noise ratio. Finally,
an image is generated reflecting the errors in the received image. In essence, this image
represents the difference between the transmitted image and the received image.
Encapsulated postscript files of these images are created if the user requests hard copy
images when prompted by the routine. The files are original_image.eps, run_image.eps,

and run_image_error.eps, respectively.

92

3. Debugging

It is often beneficial to be able to view the progress of a simulation while it is

running. This is accomplished through the debugging facility provided by OPNET.

Specifically, a trace can be requested for the desired object. Numerous user-defined

label traces were created to be used in conjunction with the CDL model. These traces

are called in the format:

Itrace trace_name

This section describes these CDL specific traces and, in general, assumes a basic

knowledge of the debugging facility in OPNET. It is worth noting that the debug mode

must be active to make use of these traces.

M

2)

3)
C))

)
(6)

(M

rates - traces the process of real-time flow establishment and update in the
presence of jamming

FEC - traces the establishment of the forward error correction mechanism
in the presence of jamming

mntr - traces the link monitoring mechanism

xmitrs - traces the utilization of the various bit pipes in the CDL
implementation

bkt - traces the actions of the token and leaky bucket modules

rt_pkt - traces the transmission of real-time packets throughout the
simulation (It is more efficient to use the debug command pkmap to
identify a specific packet by number and use the debug command pktrace
to trace it.)

img - records the arrival of each new image

The first three traces are the most useful and provide insight into the proposed real-time

transmission mechanism.

93

E. CDL MODEL MODIFICATION

This section discusses the procedures and issues involved in making the following
foreseeable changes to the existing CDL model.

(1) The addition of extra real-time FDDI stations to the model.

(2) The reorganization of the channel structure of the CDL.

(3) The implementation of an admission control algorithm.

4 The implementation of end-to-end user feedback.

5) The implementation of an alternate high level protocol.
The first two can be thought of as extensions to the existing model, while the last three

can be thought of as additions to the existing model.
1. Additional Real-time FDDI Stations

Additional real-time FDDI stations may be added to the existing model by
replacing the standard FDDI module with the real-time module, fddi_station_ts. The
attributes discussed in Sections B and C will need to be initialized and a real-time station
must be chosen for the destination. Additional stations may alsov be added by adding
additional nodes to the local FDDI ring. This would necessitate the adjustment of the
FDDI attributes as well as the initialization of the new station attributes. The added
station could be made a real-time or a non-real-time station by choosing the appropriate

module.
2. CDL Channel Reorganization

The CDL is logically organized as a collection of channels, or bit-pipes. The

existing CDL model breaks the link into four channels. This can be altered to more

94

realistically model the actual link by adding the appropriate number of transmitters and
receivers at the CDL network interfaces. Each transmitter and receiver pair must be
connected by a channel and the appropriate channel attributes must be initialized. In
addition, the "number_of xmtrs" attribute of the transmitting CDL_manager must be

adjusted to reflect the updated configuration.
3. Admission Control

The admission control algorithm is essential for an effective network-wide
employment of any real-time transmission scheme. This algorithm would typically reside
within the CDL_manager for the CDL model. Specifically, the sink state would be
modified to conduct a screening process prior to establishing a real-time flow. This
screening process would require that the process examine available bandwidth on both the
attached LAN and the attached CDL. If the bandwidth is not available for the requested
flow, the CDL_manager would send the requesting application a
"CDL_manager_cntrl_pkt" with the "join" attribute set to zero to signify a rejection of

the request.
4. End-to-End User Feedback

End-to-end user feedback can be used to adjust the minimum required image
quality at the receiver. To implement this, the receiving application must send a control
packet back to the sending application requesting an increase (or decrease) in the number
of resolution levels being transmitted. This would trigger a renegotiation between the
sending application and the CDL Manager for the new flow parameters. This
renegotiation can be modeled as a return to the existing real-time flow establishment

procedures using the updated transmission rates.

95

5. Alternate High Level Protocol

The implementation of an alternate high level protocol, such as TCP/IP, requires
extensive additions to the existing model. This alternate protocol would have direct
contact with the CDL Manager and llc source/sink in the same manner as the existing
FDDI LANs. Such a modification must carefully consider whether the CDL_NI must
function as a router or a bridge or both. The issues related to this are discussed in [Ref.
22]. Thus, in the case of TCP/IP, an IP module would have access to the CDL Manager
and would provide many of the same services to the CDL Manager as the current mac
process. All TCP/IP traffic received over the CDL would pass through this IP module
to determine whether or not the packet is destined for a station on the attached LAN.
Thus, the CDL_manager process must be modified to perform a filtering operation based
on a protocol field. In addition, because IP resides at a higher level than the FDDI mac,

additional issues specific to a network layer protocol must be addressed.

96

APPENDIX B. PROGRAM LISTINGS

A. OPNET Model

The source code for the CDL simulation model in OPNET is not included in this
appendix due to its sheer bulk. In addition, the source code is presented in a more
readable format when the user prints the hard-copy of the code from within OPNET itself.
This is accomplished by selecting the appropriate process and generating an OPNET
report. The interested reader is encouraged to generate reports concerning the processes

andv modules discussed in this thesis.

B. MATLAB

1. create_mask.m

function Losses = create_mask(filename, num_of_images) ;

$%%%% .

%%%%% create_mask - input is filename of simualtion data and

T¥%%% number of images in file

%%%%% output is matrix of values and packets lost per image
%%%% '
$%%%% Losses = create_mask(filename, num_of_images)

%%%%

$%%%% Written by T. Owens Walker III

%% Spring 1995

$%$%%%

% filename = 'ringl_f£0';

num_values_per_pkt = 100;
num_sgmts_per_block = 16384;
num_blocks_per_image = 16;

%%%%% Load data file into mask_data matrix

eval(['load ', filename, '.data'l);
eval (['mask_data = ',filename, ';']);
[Rows, Cols] = size(mask_data);

97

oP

%%%%% Break mask_data apart into separate images

for n = 1:num of_images

‘ eval (['image',num2str(n-1),' = zeros(l, (num_blocks_per_image *
num_sgmts_per_block) + num_values_per_pkt);']);

end

for row = 1:Rows
start_value = mask_data(row,3) + 1;
end_value = mask_data(row,3) + num_values_per_pkt;

eval(['image’,num25tr(mask*data(row,1)),'(1,',sprintf('%d‘,start_value),
':', sprintf('%d',end_value), ') = ones (1,num_values_per_pkt);']);
end

%%%%% Store masks in the proper *.mat files
Losses = zeros(2, num_of_images);
for n = 1l:num of_ images
eval (['mask = image',num2str(n-1), "(1l:(num_blocks_per_image *

num_sgmts_per_block));'1);
mask = reshape(mask, num_sgmts_per_block, num_blocks_per_ image) ';

[Losses (1,n),Losses(2,n)] = eval_mask(mask) ;
eval (['save image',num2str(n-1), '_mask mask']);
end
bar(0: (length(Losses(1,:)) - 1),Losses(1,:));

xlabel ('Image Number'); ylabel ('Number of Values Lost');

figure
bar (0: (length(Losses(2,:)) - 1),Losses(2,:));
xlabel (' Image Number'); ylabel ('Number of Packets Lost');

2. eval_mask.m

function [values_lost, packets_lost] = eval_mask (mask) ;

%%%%

%%%%% eval_mask - input is a mask matrix

E%%%% outputs vectors of packets and values lost
%%%%

$%%%% [values_lost, packets_lost] = eval_mask (mask) ;
%%%% '
%%%% Written by T. Owens Walker III

TI%%% Spring 1995

%%%%

[r,c] = size(mask);

values_lost = (r*c) - sum(sum(mask));

packets_lost = values_lost/100;

98

3. idwit2DEC.m

function im=idwt2DEC (file,HH,HV,GH,GV,Nh,Nv,L1,L2,lowest, flt,gq)
IDWT2 Two-dimensional inverse discrete wavelet transform
IDWT2 (FILE) returns the reconstructed image IM by
taking the inverse wavelet transform of wavelet coefficients
stored in FILE_DWT.

00 P o0 o°

% Version 1.3 by R.M. Carvalho 24 September 1994

Load the wavelet coefficients and construct the filter matrices

whos
[lr,lc]=size(dll);
min_val=d411(1,1);
max_val=dll(1,2);
for index=1:4
if index>1
if size(eval(['d' ,num2str(index),'1']))>=[1,4]
eval (['mv=(d',num2str(index), '1(1,1));'1)
eval (['Mv=(d',num2str(index), '1(1,2));"'])
eval(['d’',num2str (index), '1=Ad',num2str (index),'1(3:1c);'])
eval({'d‘,num2str(index),'1=reshape(d',numzstr(index),'l,Nl,N2);'])

eval(['d',num2str(index), '1=n2mbit2(d', num2str (index),'1,8,8,mv,Mv,0);"'])

end

dll=d11(1,3:1c);

size(dl1l)

dli=reshape (dll,N1,N2);
dll=n2mbit2(dll,8,8,min_val,max_val,0);

end

if size(eval(['d’',num2str(index),'2']))>=[1,4]
eval (['mv=(d',num2str(index),'2(1,1));'])
eval (['Mv=(d', num2str(index),'2(1,2));"'])

eval (['d',num2str (index), '2=d',num2str (index), '2(3:1c);"'])
eval(['d’ ,num2stx (index), '2=reshape(d',num2str (index), '2,N1,N2);"'])

99

eval(['d',nﬁsttr(index),’2=n2mbit2(d',numZStr(index),'2,8,8,mv,Mv,O);'])
end
if size(eval(['d', num2str(index),'3']))>={1,4]
eval (['mv=(d',num2str (index), '3(1,1));"'1)
eval (['Mv=(d',num2str (index), '3(1,2));'])
eval(['d',num2str(index),'3=d‘,num2str(index),'3(3:lc);’])
eval(['d',numZStr(index),'3=reshape(d',numZStr(index),'3,N1,N2);'J)
eval(['d',nusttr(index),‘3=n2mbit2(d',numZStr(index),'3,8,8,mv,Mv,O);'])
end
if size(eval(['d',numzstr(index),‘4']))>=[1,4]
eval (['mv=(d', num2str (index), '4(1,1));'])
eval (['Mv=(d',num2str (index), '4(1,2));'])
eval(['d',nusttr(index),'4=d‘,num25tr(index),'4(3:lc);'])
eval(['d',numZStr(index),'4=reshape(d',num2str(index),’4,N1,N2);'])

eval([’d',nusttr(index),'4=n2mbit2(d',numzstr(index),‘4,8,8,mv,Mv,O);'])

end
end
%%
$%%%%
%%%%% Apply Results of Transmission Simulation
%%%% Written by T. Owens Walker III
L%%% Thesis Work
B%%% Spring 1995
$%%%%

%%%%% Load mask workspace

image_number = input('Enter Image Number to be Generated: ") ;
eval(['load image', num2str (image_number), '_mask']);

%%%%% Apply Mask

MR, size(mask) ;
R size(dll);

MC]
DR, DC]
1
n

i~

Eh e e—

or 1:4
for m=1:4
mask_row = f£ind(I == i);
mask_temp = reshape (mask (mask_row, :) ,DR,DC) ;
eval(['d’',int2stxr(m),int2str(n),' = d',int2str (m), int2str(n), '.*
mask_temp; '1)
i=14+1;

% check for zero matrices, rebuild to size
for coef=1:4

if size(eval([‘d',num2str(coef),‘l']))<[4,4]

.eval (['rows=d',num2stxr(coef),'1(1,1);'])
eval (['cols=d' ,num2str(coef),'1(1,2);'])
eval (['d',num2str (coef), 'l=zeros(rows,cols);']);

end
if size(eval(['d' , num2stx (coef),'2']))<(4,4]

eval (['rows=4d',num2str(coef), '2(1,1);'])
eval([’cols=d’,numZStr(coef),'2(1,2);'])
eval(['d',nusttr(coef),'2=zeros(rows,cols);‘]);

end
if size(eval(['d‘,num2str(coef),'3']))<[4,4]

eval (['rows=d' ,num2str (coef),'3(1,1);'])
eval (['cols=d', num2str(coef),'3(1,2);'])
eval (['d’',num2str (coef), '3=zeros (rows,cols);']);

end
if size(eval(['d’,num2str(coef),'4']))<[4,4]

eval(['rows=d',numzstr(coef),'4(1,1);'])
eval (['cols=d',num2str(coef), '4(1,2);'])
eval(['d',num2str(coef),'4=zeros(rows,cols);']);

end
end

%$lvl 2 reconstruction
i
1vl=2
for coef=1:4
[HH,HV,GH,GV,Nh,Nv]=filt52(Ll/lvl,L2/1vl,flt,qq,1);

HV=(2) *HV;
HH=(2) *HH;
GV=(2) *GV;
GH=(2) *GH;

eval(['cwrk=rctver2(d',numzstr(coef),'1,HV,NV);‘])
eval(['dwrk1=rctver2(d',numzstr(coef),'2,GV,NV);'])

[r,cl=size(dwrkl);

datvl=cwrk(l:r,1l:c)+dwrkl; :
eval(['dwrk2=rctver2(d',numZStr(coef),'3,HV,NV);'])
eval(['dwrk3=rctver2(d',numzstr(coef),'4,GV,NV);’])
datv2=dwrk2+dwrk3;

dathl=rcthoxr2 (datvl,HH,Nh);

101

en

N
1v

d

1vl
1=1

dath2=rcthor2 (datv2,GH,Nh) ;
eval (['d0’,num2str (coef), '=dathl+dath2;'])

1 reconstruction
(HH,HV,GH,GV,Nh,Nvl=£filts2(L1/1v1l,L2/1vl, flt,qq, 1) ;

HV=(2) *HV;
HH=(2) *HH;
GV=(2) *GV;
GH=(2) *GH;

coef=0;
d01=401";
do2=d02';
d03=d03"';
d04=4da04"';

eval(['cwrk=rctver2(d’,num2str(coef),'l,HV,Nv);'])
eval(['dwrkl=rctver2(d‘,num2str(coef),'2,GV,NV);‘])
[r,cl=size(dwrkl) ;

datvl=cwrk(l:r,l:c)+dwrkl;
eval(['dwrk2=rctver2(d',numZStr(coef),‘3,HV,NV);'])
eval(['dwrk3=rctver2(d',numZStr(coef),'4,GV,Nv);'])
datv2=dwrk2+dwrk3;

dathl=rcthor2 (datvl, HH,Nh) ;
dath2=rcthor2(datv2,GH,Nh) ;

im=dathl+dath2;

im=rot90 (im) ;

im=flipud(im) ;

[Lv Lhl=size(im);

102

[1]

[2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

LIST OF REFERENCES

Defense Support Project Office, CDL System Description Document Sfor Common
Data Link (CDL), Specification Number 7681996, 1993.

S. Shenker, D. Clark, and L. Zhang, "A Service Model for an Integrated Services
Internet,” Internet Draft, October 1993.

A. K. Parekh and R. G. Gallager, "A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Single-Node Case,"
IEEE/ACM Transactions on Networking, Vol. 1, No. 3, June 1993.

D. Ferrari, "Client Requirements for Real-Time Communication Services," IEEE
Communications Magazine, Vol. 28, No. 11, pp- 65-72, November 1990.

B. A. Coan and D. Heyman, "Reliable Software and Communication III:
Congestion Control and Network Reliability," IEEE Journal on Selected Areas in
Communications, Vol. 12, No. 1, January 1994.

H. Kanakia, P. P. Mishra, and A. Reibman, "An Adaptive Congestion Control
Scheme for Real-Time Packet Video Transport," Proceedings of ACM SIGCOMM,
pp- 20-31, October 1993.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, "RSVP: A New
Resource ReSerVation Protocol," IEEE Network, September 1993.

D. Ferrari, A. Banerjea, and H. Zhang, "Network Support for Multimedia: A
Discussion of the Tenet Approach,” Computer Networks and ISDN Systems, Vol.
26, pp. 1267-1280, 1994.

A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation of a Fair
Queueing Algorithm,” Proceedings of ACM SIGCOMM, pp. 13-12, 1989.

D. D. Clark, S. Shenker, and L. Zhang, "Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism," Proceedings
of ACM SIGCOMM, pp. 14-27, August 1992.

R. M. Carvahlo, "Multi-Resolution Image Compression Using Sub-Band Coding
and Wavelet Decomposition,” Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1994.

103

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation," IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 11, No. 7, pp. 674-693, 1989.

O. Rioul and Martin Vetterli, "Wavelets and Signal Processing," IEEE Signal
Processing Magazine, pp. 14-28, October 1991.

A. Erdemir, "Data Compression by Using Wavelet Transforms and Vector
Quantization," Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1993.

H. J. Bamard, Image and Video Coding Using a Wavelet Decomposition, Ph.D.
Dissertation, Delft University, Netherlands, 1994.

D. C. Schmidt, "Safe and Effective Error Rate Monitors for SS7 Signaling Links,"
IEEE Journal on Selected Areas in Communications, Vol. 12, No. 3, April 1994.

J. W. Eichelberger, "Design and Modelling of a Link Monitoring Mechanism for
the Common Data Link (CDL),” Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1994.

A. Takeshi,, "Distributed Multilink System for Very-High-Speed Data Link
Control,” IEEE Journal on Selected Areas in Communications, Vol. 11, No. 4, pp.
540-549, May 1993.

S. Karayakaylar, "Data Link Level Interconnection of Remote Fiber Distributed
Data Interface Local Area Networks (FDDI LANs) Through the Critical Data Link
(CDL)," Master's Thesis, Naval Postgraduate School, Monterey, California, June
1994.

E. E. Nix, "Modeling and Simulation of a Fiber Distributed Data Interface Local
Area Network (FDDI LAN) Using OPNET® for Interfacing Through the Common
Data Link (CDL)," Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1994. /

MIL 3, Inc., OPNET Modeler, user's manual in 11 volumes, 3400 International
Drive NW, Washington, D.C. 20008, 1993.

S. Shukla, Design Requirements for the Common Data Link's Network Interface,
Technical Report NPS-EC-94-011, Naval Postgraduate School, September 1994.

104

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Murali Tummala, Code EC/Tu
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Shridhar Shukla, Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Loomis, Code EC/Lm

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Paul Moose, Code EC/Me

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

105

No. Copies

10.

I1.

12.

13.

14.

15.

Professor Gilbert Lundy, Code CS/Ln
Department of Computer Science

Naval Postgraduate School
Monterey, California 93943-5118

Professor Van Emden Henson, Code MA/Hv
Department of Mathematics

Naval Postgraduate School

Monterey, California 93943-5216

CDR K. Webb, Code SPAWAR 72

Space and Naval Warfare Systems Command
Crystal Park #5, 2451 Crystal Dr.

Arlington, VA 22202-5100

CDR D. Gear, Officer in Charge
NISE EAST Detachment Washington
3801 Nebraska Ave N.W.
Washington, D.C. 20393

LCDR Skinner

Advanced Maritime Projects Office
Building 659, Box 51

NAS Jacksonville, FL 32212

LT T. Owens Walker III

PCU John C. Stennis

Supervisor of Shipbuilding, Conversion and Repair, USN
Newport News, VA 23607-2787

Mr. Marc Russon, LORAL

Mail Station F2-G14

640 North 2200 West

Salt Lake City, UT 84116-2988

Program Manager, Common Data Link
Defense Airborne Reconnaissance Office
Washington, D.C. 20330-1000

106

